Datalog Program

• **Logical Programming:**
 - Finding solution to a set of requirements given as logical rules

• **Program example:**

 \[\text{married_man}(Y) \leftarrow \text{married_to}(X, Y). \]

 - **Input:**
 - Woman: Sue, Bob
 - Man: Ed
 - Married to: Sue, Bob

 - **Output:**
 - Married Man: Bob

Basic Definitions

• An **atomic formula** has the form \(R(t_1, \ldots, t_k) \) where:
 - \(R \) is a \(k \)-ary relation symbol
 - Each \(t_i \) is either a constant or a variable

• A **Datalog rule** has the form

 \[\text{head} \leftarrow \text{body} \]

 where **head** is an atomic formula and **body** is a sequence of atomic formulas

 - For simplicity, we disallow constants in the head

• A **Datalog program** is a finite set of Datalog rules

EDBs and IDBs

• **Datalog rules** operates over:

 - **Extensional Database (EDB) predicates**
 - These are the provided/stored database relations from the relational schema

 - **Intentional Database (IDB) predicates**
 - These are the relations derived from the stored relations through the rules
 - Each IDB appears as a head of some rule

 \[\text{married_man}(Y) \leftarrow \text{married_to}(X, Y). \]
Logical Interpretation of a Rule

- The rule
 \[\text{married_man}(Y) \leftarrow \text{married_to}(X, Y). \]
 is interpreted as the logical rule:
 \[\forall Y \exists X [\text{married_to}(X, Y) \rightarrow \text{married_man}(Y)] \]
 which is equivalent to
 \[\forall Y \forall X [\text{married_to}(X, Y) \rightarrow \text{married_man}(Y)] \]

Logical Interpretation of a Rule

- The rule
 \[\text{married_man}(Y) \leftarrow \text{married_to}(X, Y), \text{man}(Y). \]
 is interpreted as the logical rule:
 \[\forall Y \exists X [\text{married_to}(X, Y) \land \text{man}(Y) \rightarrow \text{married_man}(Y)] \]
 which is equivalent to
 \[\forall Y \forall X [\text{married_to}(X, Y) \land \text{man}(Y) \rightarrow \text{married_man}(Y)] \]

Semantics of Datalog Programs

- Datalog programs \(P \) are defined over a schema
 - This schema contains EDB+IDB relation symbols
 - The input to \(P \) is an instance \(I \) over the EDB schema
 - The output of \(P \) is an instance \(J \) over the IDB schema

Model-Theoretic Definition

- We say that \(J \) is a model of \(P \) (w.r.t. \(I \)) if \(I \cup J \) satisfies all the rules of \(P \)
- We say that \(J \) is a minimal model is \(J \) does not properly contain any other model
 \[\text{married_man}(Y) \leftarrow \text{married_to}(X, Y). \]

Model-Theoretic Definition

- The following is also a model for \(P \)
 - The logical rule evaluates to true on \(I \)
 \[\forall Y \forall X [\text{married_to}(X, Y) \rightarrow \text{married_man}(Y)] \]
 - However, this model is not minimal
 - We can omit a tuple and still remain with a model

Outline

- Datalog programs
 - Basic definitions
 - EDBs and IDBs
- Semantics
 - Logical interpretation
 - Model theoretic semantics
- Safety
- Extensions
 - Recursion
 - Negation
- Questions
Safety in Datalog

- What is the problem with the Datalog rule $q(X,Y) \leftarrow p(X)$?
- Our goal:
 - Finite output
 - Independent of the domain
- A safe rule is a rule in which
 - Every variable x is bounded, i.e., it appears in an atom $R(\ldots,x,\ldots)$ in the body of some rule

Outline

- Datalog programs
 - Basic definitions
 - EDBs and IDBs
- Semantics
 - Logical interpretation
 - Model theoretic semantics
- Safety
 - Extensions
 - Recursion
 - Negation
 - stratification
- Questions

Recursive Datalog

- Let us consider the following Datalog program:

 \[
 \begin{align*}
 \text{Ancestor}(A,D) & \leftarrow \text{Father}(A,D) \\
 \text{Ancestor}(A,D) & \leftarrow \text{Ancestor}(A,P), \text{Father}(P,D)
 \end{align*}
 \]
- This is a recursive program
 - Ancestor is defined in terms of itself
 - Can a non-recursive program compute Ancestor?

Recursive Datalog

- The dependency graph of a Datalog program is the directed graph (V,E) where
 - V is the set of IDB predicates (relation names)
 - E contains an edge $R \rightarrow S$ whenever there is a rule with S in the head and R in the body
- A Datalog program is recursive if its dependency graph contains a cycle
- With recursion we can express transitive closure
 - Cannot be done without recursion

Datalog with negation

- Input:

 \[
 \begin{array}{c|c|c|c|}
 \text{Woman} & \text{Man} & \text{Married to} \\
 \hline
 \text{Sue} & \text{Bob} & \text{Sue} \ \text{Bob} \\
 \text{Ed} & & \\
 \end{array}
 \]
- There are two possible minimal models:
 - The first includes $\text{married_man}(\text{Bob})$ and $\text{bachelor}(\text{Ed})$
 - The second includes $\text{married_man}(\text{Bob})$ and $\text{bachelor}(\text{Ed})$

Stratified Programs

- We need to change the semantics definition when we have negation
 - Intuitively, we want to first fully evaluate the relation married_man and then move to compute the relation bachelor
- We define the semantics by defining stratification
 - Partitioning the IDB relations to “layers”
Stratified Programs

- Let \(P \) be a Datalog program
- Let \(E_0 \) be set of EDB predicates
- A stratification of \(P \) is a partitioning of the IDBs into disjoint sets \(E_1, \ldots, E_k \) where:
 - For \(i = 1, \ldots, k \), every rule with head in \(E_i \) has body predicates only from \(E_0, \ldots, E_{i-1} \)
 - For \(i = 1, \ldots, k \), every rule with head in \(E_i \) can have negated body predicates only from \(E_0, \ldots, E_{i-1} \)
- In general there might be more than one stratification!
- Note that all of them will lead to the same semantics.

Stratified Programs - example

\[
\begin{align*}
\text{married_man}(Y) & \leftarrow \text{married_to}(X, Y). \\
\text{bachelor}(Y) & \leftarrow \text{man}(Y), \neg \text{married_man}(Y)
\end{align*}
\]

- In our case
 - \(E_0 \) includes the relation symbol \(\text{married_to}, \text{man} \)
 - \(E_1 - \text{married_man} \)
 - \(E_2 - \text{bachelor} \)

Datalog with negation

\[
\begin{align*}
\text{married_man}(Y) & \leftarrow \text{married_to}(X, Y). \\
\text{bachelor}(Y) & \leftarrow \text{man}(Y), \neg \text{married_man}(Y)
\end{align*}
\]

- The evaluation
 - \(E_0 \)
 - \text{Woman}: Sue, Ed
 - \text{Man}: Bob, Sue
 - \text{Married to}: Sue, Bob
 - \(E_1 \)
 - \text{Married_man}: Bob
 - \(E_2 \)
 - \text{bachelor}: Ed

Negation and safety

- Reminder:
 - A safe rule is a rule in which
 - Every variable \(x \) is bounded, i.e., it appears in an atom \(R(\ldots,x,\ldots) \) in the body of some rule
 - Appearing in a negated atom does not bound the variable
 - The following rule is not safe
 \[
 \text{bachelor}(Y) \leftarrow \neg \text{married_man}(Y)
 \]
 - To make it safe we must bound \(Y \), i.e.,
 \[
 \text{bachelor}(Y) \leftarrow \neg \text{married_man}(Y), \text{man}(Y)
 \]

Examples

- Write a Datalog program that defines the Binary relation \(\text{never_married}(x,y) \) where \(x \) is a woman that is not married to \(y \)

 - 1st try:
 \[
 \text{never_married}(x,y) \leftarrow \neg \text{married_to}(x,y)
 \]
 Incorrect!
 - 2nd try:
 \[
 \text{never_married}(x,y) \leftarrow \text{man}(y), \text{woman}(x), \neg \text{married_to}(x,y)
 \]

Outline

- Datalog programs
 - Basic definitions
 - EDBs and IDBs
- Semantics
 - Logical interpretation
 - Model theoretic semantics
- Safety
- Extensions
 - Recursion
 - Negation
- Questions
Question from Exam

- Assume we have the following database
 - Event(place, time)
 - Person(id)
 - Seen(id, place, time)
- A social path between persons p and p' is a sequence p₁, p₂, ..., pₙ such that
 - p = p₁ and p' = pₙ
 - For every i there exists an event such that both pᵢ, pᵢ₊₁ have participated in
- Write a Datalog program (possibly with negation) that defines the relation Out(i,i') such that
 - there exists a social path between i and i'
 - i and i' haven’t participated in the same event

Answer

TogetherEvent(I, I') ← Person(I), Person(I'), Event(p,t), Seen(I,p,t), Seen(I',p,t)

SocialPath(I, I') ← TogetherEvent(I, I')
SocialPath(I, I') ← SocialPath(I, J), TogetherEvent(J, I')

Out(I,I') ← SocialPath(I,I'), ~TogetherEvent(I, I')