BCNF revisited:
40 Years Normal Forms

J.A. Makowsky
Faculty of Computer Science
Technion - IIT, Haifa

janos@cs.technion.ac.il
www.cs.technion.ac.il/~janos
Acknowledgements

Based on work by M.W. Vincent and joint work with E.V. Ravve

See also:

[LL99] Mark Levene and George Loizou
A Guided Tour of Relational Databases and Beyond
Springer 1999
Overview

Part I

- Normal forms and functional dependencies
- BCNF and redundancy
- BCNF and update anomalies

Part II

- BCNF and storage saving
- The big characterization theorem for BCNF
Guiding examples

Functional Dependencies

\(U = \{A_1, A_2, \ldots, A_m\} \) a set of attributes
\(F \) a set of functional dependencies for \(R[U] \)
of the form \(X \rightarrow Y \) with \(X, Y \subseteq U \).

A functional dependency \(X \rightarrow Y \) is **trivial** if \(Y \subseteq X \).

\(F^+ \) the **deductive closure** of \(F \) (with respect to the Armstrong axioms).

\(K \subseteq U \) is a **superkey** for \(F \) if \(K \rightarrow U \in F^+ \). \(K \subseteq U \) is a **key** for \(F \) if \(K \) is a superkey, but no \(K' \subset K \) is a superkey.

The set of **key dependencies** of \(F \) is defined by
\(F_{\text{key}} = \{ K \rightarrow U \in F^+ : K \text{ is a key} \} \).

Let \(F \) be a set of functional dependencies for \(R[\bar{A}, \bar{B}] \) and let \(S[\bar{A}] \). We denote by \(F[S] \) the set \(\{ X \rightarrow Y : XY \subseteq \bar{A} \text{ and } X \rightarrow \in F^+ \} \), and call it the **projection of** \(F \) **on** \(\bar{A} \).
Example 4.1 (from [LL99]): $EMP_1 = [ENAME, DNAME, MNAME]$

$F_1 = \{ ENAME \rightarrow DNAME, DNAME \rightarrow MNAME \}$, $ENAME$ is the only key.

An instance r_1 for EMP_1 which satisfies F_1

<table>
<thead>
<tr>
<th>ENAME</th>
<th>DNAME</th>
<th>MNAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark</td>
<td>Computing</td>
<td>Peter</td>
</tr>
<tr>
<td>Angela</td>
<td>Computing</td>
<td>Peter</td>
</tr>
<tr>
<td>Graham</td>
<td>Computing</td>
<td>Peter</td>
</tr>
<tr>
<td>Paul</td>
<td>Maths</td>
<td>Donald</td>
</tr>
<tr>
<td>George</td>
<td>Maths</td>
<td>Donald</td>
</tr>
</tbody>
</table>

We have some problems:

- We cannot add a new value for $DNAME$ without a value for $ENAME$.
 Insertion Anomaly

- We cannot delete all the values for $ENAME$ without deleting all the values for $DNAME$.
 Deletion Anomaly

- It is not enough to check keys: Changing in t_1 Peter to Philip, or Computing to Maths does not violate the key. **Modification Anomaly**

- Values for $MNAME$ are repeated for every value of $ENAME$.
 Redundancy Problem
Example 4.2 (from [LL99]): $EMP_2 = [ENAME, CNAME, SAL]$

$F_2 = \{ ENAME \rightarrow SAL \}$, $ENAME, CNAME$ is the only key.

An instance r_2 for EMP_2 which satisfies F_2

<table>
<thead>
<tr>
<th>EMP_2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ENAME</td>
<td>CNAME</td>
</tr>
<tr>
<td>t_1</td>
<td>Jack</td>
</tr>
<tr>
<td>t_2</td>
<td>Jack</td>
</tr>
<tr>
<td>t_3</td>
<td>Jack</td>
</tr>
<tr>
<td>t_4</td>
<td>Donald</td>
</tr>
<tr>
<td>t_5</td>
<td>Donald</td>
</tr>
</tbody>
</table>

We have the same problems:

- **Insertion Anomaly**: How to insert employees without children?
- **Deletion Anomaly**: How to delete children, once they are grown up?
- **Modification Anomaly**: We do not violate the key if we raise the salary from 25 to 27 only in t_1.
- **Redundancy Problem**: Salaries are repeated when employee has many children.
Example 4.3 (from [LL99]):

\[ADDRESS = [CITY, STREET, ZIPCODE] \]

\[F_3 = \{CITY, STREET \rightarrow ZIPCODE, ZIPCODE \rightarrow CITY\} \],
Both \textit{CITY, STREET} and \textit{ZIPCODE, STREET} are keys.

An instance \(s \) for \(ADDRESS \) which satisfies \(F_3 \)

\[
\begin{array}{|c|c|c|}
\hline
\text{STREET} & \text{CITY} & \text{ZIPCODE} \\
\hline
t_1 & \text{Hampstead Way} & \text{London} & \text{NW11} \\
t_2 & \text{Falloeden Way} & \text{London} & \text{NW11} \\
t_3 & \text{Oakley Gardens} & \text{London} & \text{N8} \\
t_4 & \text{Gower Street} & \text{London} & \text{WC1E} \\
t_5 & \text{Amhurst Rd} & \text{London} & \text{E8} \\
\hline
\end{array}
\]

Identify the problems:

- **Insertion Anomaly:** New street built...
- **Deletion Anomaly:** Zipcode deleted ... (say area is enlarged)
- **Modification Anomaly:** Change City in \(t_1 \) from London to Bristol. Keys are not violated but \(ZIPCODE \rightarrow CITY \) is.
- **Redundancy Problem:** City is repeated.
Normal Forms

(R[U], F) is in **Boyce-Codd Normal Form** or
(R[U], F) is in **BCNF**
if \((F_{Key})^+ = F^+\).

(R[U], F) is in **Third Normal Form** or \((R[U], F)\) is in **3NF**
if for every non-trivial \(X \rightarrow Y \in F^+\) either

- \(X\) is a superkey or

- \(Y \subseteq K\) for some key \(K\) for \(F\), i.e., \(K \rightarrow U \in F^+\).
 This is called a **BCNF-violation for the key** \(K\).
Examples for Normal Forms

The relation scheme $R[CSZ]$ with
- C City
- S Street
- Z Zipcode

and $CS \rightarrow Z, Z \rightarrow C$ is in 3NF but not in BCNF.

CS is the only key
$Z \rightarrow C$ is a BCNF-violation.
Examples for Normal Forms, II

The relation scheme \(R[NSCAP] \) with

\[\begin{align*}
N \ (\text{Name}), & \ S \ (\text{Street}), & \ C \ (\text{City}) \\
A \ (\text{Areacode}), & \ P \ (\text{Phone number})
\end{align*} \]

and \(NSC \rightarrow AP, \ SC \rightarrow A \), is not in 3NF.

\(NSC \) is the only key

\(R_1[NSCP] \) with \(NSC \rightarrow P \), and
\(R_2[SCA] \) with \(SC \rightarrow A \),
are both in BCNF.
What we (should) know from the introductory course

Given a set of attributes $R[A_1, \ldots, A_m]$ and a set F of functional dependencies, we want to decompose R into a set of relations R_1, \ldots, R_k which are in Normal Form such that

- **information is preserved**, i.e., for all instances $r, r_1, \ldots r_k$ which satisfy F we have that $r = r_1 \Join \ldots \Join r_k$.

- **F is preserved**, i.e., $(F[R_1] \cup \ldots \cup F[R_k])^+ = F^+$.

- This can be achieved for 3NF using minimal covers.

- It cannot always be achieved for BCNF.
Why Boyce Codd Normal Form?

- BCNF minimizes storage
- BCNF avoids redundancy
- BCNF avoids update anomalies

We have to make this precise.
How to adapt BCNF to other data models?

- Disregard the syntactic definition!
- Adapt one of the equivalent semantic definitions!
- See what you get!
- You may get different concepts for each of them!
A historic remark

1973-1980 Concepts of normal forms are developed. Consequence problem for dependencies is recognized as central.

1980-1985 Consequence problem for dependencies is found to be undecidable, but for very restricted cases. Normal forms are considered untractable…..

1990- Renewed interest in normal forms emerges

2000- Normal Forms are proposed for XML.
References for Normal Forms and XML

• Marcelo Arenas and Leonid Libkin
 A Normal Form for XML Documents

• Marcelo Arenas and Leonid Libkin
 An Information-Theoretic Approach to Normal Forms for Relational and XML Data

• Millist W. Vincent, Jixue Liu, and Chengfei Liu
 Strong Functional Dependencies and Their Application to Normal Forms in XML

• Klaus-Dieter Schewe
 Redundancy, Dependencies and Normal Forms for XML Databases
 Sixteenth Australasian Database Conference (ADC2005), vol. 39 of CRPIT, ACS, pp. 7-16.

• Diem-Thu Trinh
 XML Functional Dependencies based on Tree Homomorphisms
 PhD Thesis, June 2009, Faculty of Mathematics/Informatics and Mechanical Engineering, Clausthal University of Technology, Clausthal, Germany
Let R, F be a relation scheme.

R is F-redundant (F^+-redundant) on XY if there exists a relation $r \models F$ and a non-trivial FD $X \rightarrow Y \in F$ ($\in F^+$), and at least two distinct tuples $t_1, t_2 \in r$ with $t_1[XY] = t_2[XY]$.

R is F-redundant (F^+-redundant) if there is $XY \subset U$ such that R is F-redundant (F^+-redundant) on XY.

Example: R with $F = \{A \rightarrow B, BC \rightarrow A\}$ is F-redundant, and hence F^+-redundant.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
<td></td>
</tr>
<tr>
<td>a_1</td>
<td>b_1</td>
<td>c_2</td>
<td></td>
</tr>
</tbody>
</table>
Redundancy, II

The set of attributes of the form XY

- with $X \rightarrow Y \in F$ and not trivial, are called **facts**.

- with $X \rightarrow Y \in F$ and not trivial, are called **explicit facts**.

- with $X \rightarrow Y \in F^+ - F$ and not trivial, are called **implicit facts**.

Observation: $R[U]$ is F-redundant (F^+-redundant) on $XY \subseteq U$ iff XY is a fact and XY is not a superkey.

The rationale behind redundancy is, that if R is redundant on an explicit or implicit fact XY, the fact should be stored in a different table.

R is **not** F-redundant (F^+-redundant) if every fact is a superkey.
Redundancy, III

Theorem:
(Bernstein, Goodman, 1980; M.W. Vincent 1994)

The following are equivalent:

(i) R, F is in BCNF;

(ii) R, F is not F-redundant;

(iii) R, F is not F^+-redundant;

Proof: (ii) and (iii) are equivalent by the definition of F^+.

(i) implies (ii) will be discussed on the blackboard.

(ii) implies (i) will be proven later in the lecture.
Insertion anomalies, I

We are given a relation scheme $R[U]$ and a set of FD’s F with a set of candidate keys given by F_{Key}.

Let r be a relation for R with $r \models F$.

Let $t[U]$ be a tuple we want to insert.

We check whether $r \cup \{t[U]\} \models F_{Key}$.

If $r \cup \{t[U]\} \models F_{Key}$ we accept, else we reject the insertion of $t[U]$.

If we accept, but $r \cup \{t[U]\} \not\models F$, we say that $t[U]$ is an insertion violation, IV.

R, F has an insertion anomaly if there is an r and $t[U]$, which is an insertion violation.
Insertion anomalies, Example

We look at $R[A, B, C]$ with $F = \{A \rightarrow B, B \rightarrow C\}$.

$$
\begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
\text{a}_1 & \text{b}_1 & \text{c}_1 \\
\text{a}_2 & \text{b}_2 & \text{c}_2 \\
\end{array}
$$

We want to insert (a_3, b_1, c_3).

This is compatible with $F_{key} = \{A \rightarrow BC\}$.

$$
\begin{array}{ccc}
\text{A} & \text{B} & \text{C} \\
\text{a}_1 & \text{b}_1 & \text{c}_1 \\
\text{a}_2 & \text{b}_2 & \text{c}_2 \\
\text{a}_3 & \text{b}_1 & \text{c}_3 \\
\end{array}
$$

But this violates $B \rightarrow C$.
Insertion anomalies, Theorem

Recall R, F is in BCNF iff $F_{\text{Key}} \models F$.

Theorem: (R. Fagin, 1979)

R, F is in BCNF iff it has no insertion anomalies.

Proof:

Assume $F_{\text{Key}} \models F$, $r \models F$ and $r \cup \{t\} \models F_{\text{Key}}$.

Then $r \cup \{t\} \models F$.

The other direction needs some work and is proven later in the course.
We are given a relation scheme \(R[U] \) and a set of FD’s \(F \) with a set of candidate keys given by \(F_{Key} \).

Let \(r \) be a relation for \(R \) with \(r \models F \).

Let \(t[U] \in r \) be a tuple we want to delete.

We check whether \(r - \{t[U]\} \models F_{Key} \).

If \(r - \{t[U]\} \models F_{Key} \) we accept, else we reject the deletion of \(t[U] \).

If we accept, but \(r - \{t[U]\} \not\models F \), we say that \(t[U] \) is an deletion violation, DV.

\(R, F \) has an deletion anomaly if there is an \(r \) and \(t[U] \), which is an deletion violation.
Deletion anomalies, II

Observation:
Let r be a relation for R and F a set of FD's.
Let $s \subseteq r$ another relation for R.

If $r \models F$ so also $s \models F$.

Conclusion:
There are no deletion anomalies for FD's.

Note: In the presence of Multivalued Dependencies (MVD’s) there may occur deletion anomalies.
Modification anomalies, I

Let \(r \) be a relation for \(R[U], F, t \in r, r \models F, K_0 \) be a fixed candidate key for \(F \).

Let \(t' \) be a tuple such that \((r - \{t\}) \cup \{t'\} \models F_{Key}\) and one of the following:

(i) \(t[K] = t'[K] \) for some candidate key for \(F \);

(ii) \(t[K_0] = t'[K_0] \);

(iii) \(t[K] = t'[K] \) for every candidate key for \(F \);

but \((r - \{t\}) \cup \{t'\} \not\models F\)

Then \(r \) and \(t' \) show a modification anomaly \(M_i, M_{ii}, M_{iii} \) respectively.

Remark: Deletion anomalies can be viewed as special cases of modification anomalies.
Modification anomalies, Example

$R[ABC]$ with $F = \{A \rightarrow B, BC \rightarrow A\}$
Candidate keys AC, BC. Choose $K_0 = BC$.

\[
\begin{array}{|c|c|c|}
\hline
 & A & B & C \\
\hline
 t= & a_1 & b_1 & c_1 \\
 s= & a_1 & b_1 & c_2 \\
\hline
\end{array}
\]

We modify once t and once s:

\[
\begin{array}{|c|c|c|}
\hline
 & A & B & C \\
\hline
 t' = & a_1 & b_1 & c_1 \\
 & a_1 & b_2 & c_2 \\
\hline
\end{array}
\]

$t[AC] = t'[AC]$ and F_{Key} is satisfied,
but $A \rightarrow B$ is violated.

\[
\begin{array}{|c|c|c|}
\hline
 & A & B & C \\
\hline
 s' = & a_1 & b_1 & c_1 \\
 & a_1 & b_2 & c_2 \\
\hline
\end{array}
\]

$s[BC] = s'[BC]$ and F_{Key} is satisfied,
but $A \rightarrow B$ is violated.

In this example we cannot take care of both candidate keys simultaneously.
Modification anomalies, II

Clearly, every M_{iii} anomaly is also an M_{ii} anomaly, and every M_{ii} anomaly is also an M_{i} anomaly.

Observation:

If R, F is in BCNF then it has no modification anomaly M_{i} (and hence neither M_{ii} and M_{iii}).

Proof: Use that $F_{key} \models F$.
Modification anomalies, III

Theorem: (M.W. Vincent, 1994)

The following are equivalent:

(i) R, F is in BCNF

(ii) R, F has no modification anomaly M_i

(iii) R, F has no modification anomaly M_{ii}

Henceforth, we speak simply of **modification anomalies**, meaning M_i-anomalies.

Remark: Vincent also introduces a normal form weaker than BCNF but stronger than 3NF, which is characterized by the absence of M_{iii} modification anomalies.
Relationship between anomalies

Theorem: (Theorem 4.1. in [LL99])

Let F be a set of functional dependencies over a relation scheme R. The following are equivalent:

(i) R has an insertion anomaly with respect to F;

(ii) R is redundant with respect to F;

(iii) R has a modification anomaly with respect to F.

Proof of Theorem 4.1: (i) implies (ii)

R has an insertion anomaly given by $r \models F$ and t such that

$$r \cup \{t\} \models F_{\text{Key}} \text{ but } r \cup \{t\} \nvdash F.$$

So for some $X \rightarrow A \in F^+$, where X is not a superkey, there is $t' \in r$

$$\{t\} \cup \{t'\} \nvdash X \rightarrow A.$$

Let u be a tuple with $u[X_F^+] = t'[X_F^+]$ and such that for all $B \in R - X_F^+$ the value $u[B]$ does not appear in r.

Now $u \notin r$. Since X is not a superkey, we see that R is redundant for F. Take $r' = r \cup \{u\}$ and note that $r' \models F$.

29
Proof of Theorem 4.1: (ii) implies (iii)

Suppose R is redundant with respect to F.

So there exist a relation over R such that $r \models F$ and for some $X \rightarrow A \in F$ there are two distinct tuples $t_1, t_2 \in r$ such that $t_1[XA] = t_2[XA]$.

Therefore $X \rightarrow A \notin F_{Key}$, and each key for R contains some attribute not in X.

Let t be a tuple over R with

$$t[X_F^+ - A] = t_1[X_F^+ - A]$$

and such that for all attributes $B \in R - (X_F^+ - A)$ $t[B]$ is a value not appearing in r.

To get the modification anomaly, we observe that

$$(r - \{t_1\}) \cup \{t\} \models F_{Key}$$

but

$$(r - \{t_1\}) \cup \{t\} \nmid F$$
Proof of Theorem 4.1: (iii) implies (i)

Suppose R has a modification anomaly.

So there is a relation r over R with $r \models F$ and tuples t, u such that

$$(r - \{u\}) \cup \{t\} \models F_{Key} \text{ but } (r - \{u\}) \cup \{t\} \not\models F.$$

Taking now $r' = r - \{u\}$ we get an insertion anomaly for r'.

Q.E.D.
End of Part I
Part II
Let $R[U], F$ be a relation scheme.
An insertion of a tuple t into $r |\models F$ is said to be F-valid, if $r \cup \{t\} |\models F$.

A set of attributes $X \subseteq U$ is said to be unaffected by a valid insertion $r' = r \cup \{t\}$ iff $\pi_X(r) = \pi_X(r')$.

A valid insertion is F-unpredictable (F^+-unpredictable) if there exists a non-trivial $X \rightarrow Y \in F$ ($X \rightarrow Y \in F^+$) such that XY is unaffected by it.
Unpredictable insertions, Example

$R[ABC]$ with $F = \{A \rightarrow B, BC \rightarrow A\}$

We look at $A \rightarrow B$:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
</tr>
</tbody>
</table>

We now insert t:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a_1</td>
<td>b_1</td>
<td>c_1</td>
</tr>
<tr>
<td></td>
<td>a_1</td>
<td>b_1</td>
<td>c_2</td>
</tr>
</tbody>
</table>

This is a valid insertion which does not affect AB. Hence it is F-unpredictable.

Clearly, F-unpredictable implies F^+-unpredictable.
Unpredictable insertions, II

Observation:
If R, F has an F^+-unpredictable insertion, then it is not in BCNF.

Proof:
There is r and t such that $r \cup \{t\} \models F$ and hence $r \cup \{t\} \models F_{Key}$.

There is some non-trivial $X \rightarrow Y \in F^+$, and $t' \in r$ with $t \neq t'$ but $t[XY] = t'[XY]$.

Assume for contradiction, R, F is in BCNF.
So X is a superkey for F.
But $r \cup \{t\} \models F_{Key}$. So $t = t'$, a contradiction.

Exercise: Show that R, F has a F^+-unpredictable insertion iff R, F is F^+-redundant.
Theorem: (Bernstein, Goodman, 1980)
The following are equivalent:

(i) R, F is in BCNF;

(ii) R, F has no F-unpredictable insertions.

(iii) R, F has no F^+-unpredictable insertions.
Minimizing storage, I

Let $R[U], F$ be a relation scheme, and $\pi_U R = R_i[U_i]$ be an information preserving decomposition, i.e. $F \models \forall_i R_i[U_i] = R$.

We say that the decomposition is storage saving if there are instances $r = \forall_i r_i$ such that $\sum_i |r_i| \leq |r|$.

Example:
Consider $R[ABCD]$ with
$F_1 = \{A \rightarrow BCD, C \rightarrow D\}$ (not in BCNF) and
$F_2 = \{A \rightarrow BCD, C \rightarrow A\}$ (in BCNF) and

We decompose R into $R_1[ABC]$ and $R_2[CD]$ for F_1 and $S_1[AC]$ and $S_2[ABD]$ for F_2.

With F_1 there may be fewer values for C than for A, but with F_2 this is not possible.
Observation: If R, F is in BCNF then it has no storage saving decomposition.

Proposition: R, F has a storage saving decomposition iff R, F is F^+-redundant.

Proof: Assume R, F is F^+-redundant on XY with $X \rightarrow Y \in F^+$. Then there is $r \models F$ such that the decomposition $\pi_{XY} r \pi_{X(U-Y)} r$ is storage saving.

Conversely, if R, F has a storage saving information preserving decomposition with $F \models \bigwedge_i R_i[U_i] = R$. So there are $X, Y \subseteq U$ and there is an i such that $XY = U_i$ and $X \rightarrow Y \in F^+$. (Here we use the characterization of information preserving decompositions!)

Now it is easy to see that R, F is F^+-redundant on XY. Q.E.D.
Theorem: (Biskup; Vincent and Srinivasan)

If R, F is in BCNF iff it has no storage saving decomposition.

Remark: This holds also for wider dependency classes and their respective normal forms.
Relationship between anomalies (revisited)

Additionnaly to Theorem 4.1. in [LL99] we now have shown:

Proposition:

Let F be a set of functional dependencies over a relation scheme (R, F'). The following are equivalent:

(i) (R, F') has an insertion anomaly with respect to F';

(ii) (R, F') is redundant with respect to F';

(iii) (R, F') has a modification anomaly with respect to F'.

(iv) (R, F') has F'-unpredictable insertions.

(v) (R, F') has a storage saving information preserving decomposition.

Additionally, if (R, F') is in BCNF, then none of the above may occur.
Completing the picture

We still need to prove the following:

Proposition: The following are equivalent:

(i) \((R, F)\) is **not** in BCNF;

(ii) \((R, F)\) is redundant with respect to \(F\);

Proof: (i) implies (ii): Suppose \((R, F)\) is not in BCNF and for some \(X \rightarrow A \in F^+\) \(X\) is not a superkey.
We take \(r\) to consist of two tuples \(t_1, t_2\) such that \(t_1[X^+] = t_2[X^+]\) and for all \(B \in U - X^+\) we have that \(t_1[B] \neq t_2[B]\).
Clearly \(r \models F\) and \((R, F)\) is redundant on \(X^+\).

(ii) implies (i): Suppose \((R, F)\) is redundant and for some \(r \models F\) and for some \(X \rightarrow A \in F^+\). But then \(X\) is not a superkey.

Q.E.D.
Characterizations of BCNF

Theorem: [BCNF-characterization Theorem]

Let F be a set of functional dependencies over a relation scheme (R, F). The following are equivalent:

(i) (R, F) is **not** in BCNF;

(ii) (R, F) has an insertion anomaly with respect to F;

(iii) (R, F) is redundant with respect to F;

(iv) (R, F) has a modification anomaly with respect to F.

(v) (R, F) has F-unpredictable insertions.

(vi) (R, F) has a storage saving information preserving decomposition.
References

• H. Mannila and K.-J. Räihä, *The design of relational databases*, Addison Wesley, 1992

References

References, II

- J.A. Makowsky and E.V. Ravve, BCNF revisited: 30 years normal forms, in preparation