Database Management Systems

Course 236363

Lecture 6:
Integrity Constraints
Database Constraints (Dependencies)

- Definition: properties that DBs should satisfy beyond conforming to the schema structure

- There are various types of constraints, each with its designated
 - Language (how do rules look like?)
 - Semantics (what do rules mean?)

- In this lecture, we will learn constraint languages, discuss their semantics and discuss reasoning over them
Why is it important to model and understand constraints?

- Application coherence/safety
- Efficiency
- Inconsistency management
- Principles of schema design
Use 1: Constraints for Application Coherence

• The “obvious” application of constraints is software safety: DBMS assures that, whatever app developers/users do, DB always satisfies specified constraints.

• Database constraints reduce (but typically not eliminate) responsibility of custom code to verify integrity.
Use 2: Constraints for Efficiency

• Knowing that constraints are satisfied can significantly help query planning

• In addition, joins are commonly via keys; so designated structure/indices can be built
• An *inconsistent database* contains inconsistent (or impossible) information
 – Two students have the same ID
 – A student gets credit for the same course twice
 – A student takes a non-existing course
 – A student gets a grade but missing an assignment

• Modeling: \((D, \Sigma)\) where \(D\) is a database and \(\Sigma\) is a set of *integrity constraints*; alas, \(D\) violates \(\Sigma\)

• (Slides from “Uncertainty in Databases,” Advanced Topics 236605)
Consistent Query Answering

Database D

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Functional Dependency:

every student gets a unique grade per course

Integrity Constraints Σ

\[
\begin{align*}
\text{SELECT} & \text{ student} \\
\text{FROM} & \text{ Grades G, Courses C} \\
\text{WHERE} & \text{ G.grade } \geq 85 \text{ AND} \\
& \text{ G.course } = \text{ C.course AND} \\
& \text{ C.lecturer=’Eran’}
\end{align*}
\]

Ahuva

Alon

?
Consistent Query Answering

Database D

Functional Dependency: every student gets a unique grade per course

Integrity Constraints Σ

```
SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 87 AND G.course = C.course AND C.lecturer='Eran'
```

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Ahuva

Alon
Consistent Query Answering

Database D

Functional Dependency: every student gets a unique grade per course

Integrity Constraints Σ

```
SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 80 AND
    G.course = C.course AND
    C.lecturer = 'Eran'
```

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>
Use 4: Constraints for Schema Design

• Interestingly, the motivation to inventing some popular types of constraints was to define what “good schemas” should avoid!
Embassy

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Studies

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Alma</td>
<td>PL</td>
<td>2</td>
</tr>
<tr>
<td>Avia</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>PL</td>
<td>2</td>
</tr>
</tbody>
</table>

Population repeated for every city! *Why is it bad?*

- Redundancy – we store more bits than needed
- We can get inconsistencies
- We may not be able to store some information (or be forced to used nulls)
Normal Forms

Embassy

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Not in “normal form”

<table>
<thead>
<tr>
<th>country</th>
<th>city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>USA</td>
<td>NYC</td>
</tr>
<tr>
<td>UK</td>
<td>London</td>
</tr>
</tbody>
</table>

CityPopulation

<table>
<thead>
<tr>
<th>city</th>
<th>population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>NYC</td>
<td>8,400,000</td>
</tr>
<tr>
<td>London</td>
<td>8,500,000</td>
</tr>
</tbody>
</table>

In some “normal form”

- France to Israel: Tel Aviv, population 400,000
- USA to Israel: Tel Aviv, population 400,000
- Israel to France: Paris, population 2,200,000
- USA to France: Paris, population 2,200,000

In “normal form”?

- France to Israel: Tel Aviv, population 400,000
 - Country: France, Host: Israel, Address: Tel Aviv
- USA to Israel: Tel Aviv, population 400,000
 - Country: USA, Host: Israel, Address: Tel Aviv
- Israel to France: Paris, population 2,200,000
 - Country: Israel, Host: France, Address: Paris
- USA to France: Paris, population 2,200,000
 - Country: USA, Host: France, Address: Paris
Another Bad Schema

<table>
<thead>
<tr>
<th>student</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints [Complimentary]
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
Functional Dependencies (FDs)

• *Functional Dependency* is the most studied type of database constraint

• Most famous special case: *keys*
 – SQL distinguishes between two types of key constraints: *primary key* (≤1 allowed per relation), and *uniqueness* (as many as you want)
 • A primary key cannot be NULL, and it typically has a more efficient index (determines tuple physical sorting)
Example: Smartphone Store

Smartphone

<table>
<thead>
<tr>
<th>name</th>
<th>os</th>
<th>disk</th>
<th>price</th>
<th>vendor</th>
<th>headq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>32</td>
<td>550</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>64</td>
<td>700</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy Note 5</td>
<td>Android</td>
<td>32</td>
<td>630</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>16</td>
<td>595</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>128</td>
<td>700</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>32</td>
<td>635</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>128</td>
<td>900</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
</tbody>
</table>

The attribute set **determines** the attribute:

- **name**
- **os**
- **disk**
- **price**
- **vendor**
- **headq**
Example: US Addresses

USLocations

<table>
<thead>
<tr>
<th>name</th>
<th>state</th>
<th>city</th>
<th>street</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>White House</td>
<td>DC</td>
<td>Washington</td>
<td>1600 Pennsylvania Ave NW</td>
<td>20500</td>
</tr>
<tr>
<td>Wall Street</td>
<td>NY</td>
<td>New York</td>
<td>11 Wall St.</td>
<td>10005</td>
</tr>
<tr>
<td>Empire State B.</td>
<td>NY</td>
<td>New York</td>
<td>350 Fifth Avenue</td>
<td>10118</td>
</tr>
<tr>
<td>Hollywood Sign</td>
<td>CA</td>
<td>Los Angeles</td>
<td>4059 Mt Lee Dr.</td>
<td>90068</td>
</tr>
</tbody>
</table>

The attribute set \(\text{state} \), \(\text{city} \), \(\text{street} \) \(\text{determines} \) the attribute \(\text{zip} \).

The attribute set \(\text{zip} \), \(\text{state} \) \(\text{determines} \) the attribute \(\text{state} \).
Introduction

Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms

Other Types of Constraints [Complimentary]
 - Multivalued Dependencies
 - Inclusion Dependencies
Notation

• In the case of FDs, we consider *a single relation schema*

• We write an **attribute set** as a sequence of attribute names (not set notation {...})
 – name, os, disk, price

• An attribute set is denoted by a capital letter from the end of the Latin alphabet
 – X, Y, Z

• Concatenation stands for union
 – XY stands for X∪Y
 – XX = X
 – XY = YX = YXXX
Functional Dependency

• From now on, we will assume the schema S without mentioning it explicitly.

• A *Functional Dependency (FD)* is an expression $X \rightarrow Y$ where X and Y are sets of attributes.

 – Examples:

 • $\text{name, disk} \rightarrow \text{price, os, vendor}$
 • $\text{name} \rightarrow \text{os, vendor}$
 • $\text{country, city, street} \rightarrow \text{zip}$
 • $\text{zip} \rightarrow \text{country}$
Semantics of an FD

• A relation r satisfies the FD $X \rightarrow Y$ if:
 for all tuples t and u in r, if t and u agree on
 X then they also agree on Y

• Notationally:

 $t[X] = u[X] \implies t[Y] = u[Y]$

• A relation r satisfies a set F of FDs if r
satisfies every FD in F
Trivial FDs

• An FD is *trivial* if it holds in every relation (over the underlying schema)

• **Proposition:** An FD $X \rightarrow Y$ is trivial if and only if $Y \subseteq X$

 – Proof:

 • The “if” direction is straightforward: tuples that agree on entire X also agree on every subset of X

 • For the “only if” direction, consider the relation r that contains 2 tuples that agree precisely on X; if $Y \not\subseteq X$ then we get a violation of $X \rightarrow Y$
Can you express an FD stating that a column must contain a constant value (same across all tuples)?

<table>
<thead>
<tr>
<th>faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
</tr>
<tr>
<td>CS</td>
</tr>
<tr>
<td>CS</td>
</tr>
<tr>
<td>CS</td>
</tr>
</tbody>
</table>

\(\emptyset \rightarrow \text{faculty} \)
Problem: No Unique Representation...

<table>
<thead>
<tr>
<th>symbol</th>
<th>name</th>
<th>dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Computer Science</td>
<td>Irad Yavneh</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
<td>Ariel Orda</td>
</tr>
<tr>
<td>IE</td>
<td>Industrial Engineering</td>
<td>Avishai Mandelbaum</td>
</tr>
</tbody>
</table>

- \(F_1 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{name}, \text{symbol} \rightarrow \text{dean}\} \)
- \(F_2 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{dean}, \text{dean} \rightarrow \text{symbol}\} \)
- \(F_3 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{symbol}, \text{symbol} \rightarrow \text{dean}\} \)

They all mean precisely the same thing!
Entailed (Implied) FDs

• Let F be a set of FDs

• An FD $X \rightarrow Y$ is *entailed* (or *implied*) by F if for every relation r over the schema, if r satisfies F then r satisfies $X \rightarrow Y$

• Notation: $F \models X \rightarrow Y$
Examples of Entailment

• $F = \{\text{name} \rightarrow \text{vendor}, \text{vendor} \rightarrow \text{headq}\}$
 - $F \models \text{name} \rightarrow \text{headq}$
 - $F \models \text{name, vendor} \rightarrow \text{headq}$
 - $F \models \text{name, vendor} \rightarrow \text{vendor}$

• $F = \{\text{A} \rightarrow \text{B}, \text{B} \rightarrow \text{C}, \text{C} \rightarrow \text{A}\}$
 - $F \models \text{A} \rightarrow \text{A}$
 - $F \models \text{A} \rightarrow \text{B}$
 - $F \models \text{A} \rightarrow \text{C}$
 - $F \models \text{A} \rightarrow \text{ABC}$
Closure of an FD Set

• Let F be a set of FDs
• The closure of F, denoted F^+, is the set of all the FDs entailed by F

$$F^+ = \{X \rightarrow Y \mid F \models X \rightarrow Y\}$$

• Observations:
 – $F \subseteq F^+$
 – $(F^+)^+ = F^+$
 – F^+ contains every trivial FD
Closure of an Attribute Set

• Let F be a set of FDs, and let X be a set of attributes.

• The *closure* of X under F, denoted X^+, is the set of all the attributes A such that $X \rightarrow A$ is implied by F.

 – Note: notation assumes that F is known from the context.
• For all F, X, Y:

 $X^+ = \{A \mid F \models X \rightarrow A\} = \{A \mid (X \rightarrow A) \in F^+\}$

 $X \subseteq X^+$

 $(X^+)^+ = X^+$

 If $X \subseteq Y$ then $X^+ \subseteq Y^+$
Minimal Cover

- It is often convenient to work with a set of FDs that does not have any trivality/redundancy within; this is captured by the formal notion of a *minimal cover*
- Formally, a *minimal cover* (or *minimal basis*) of a set F of FDs is a set G of FDs with the following properties:
 - $G^+ = F^+$
 - FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$
 - All FDs are required: no FD $X \rightarrow A$ in G is such that $G \setminus \{X \rightarrow A\} \models X \rightarrow A$
 - All attributes are required: no FD $XB \rightarrow A$ in G is such that $G \models X \rightarrow A$
Example of Minimal Covers

\{A\rightarrow BC, B\rightarrow AC, C\rightarrow AB, AB\rightarrow C, AC\rightarrow B\}

• Minimal cover 1:
 \{A\rightarrow B, B\rightarrow C, C\rightarrow A\}

• Minimal cover 2:
 \{C\rightarrow B, B\rightarrow A, A\rightarrow C\}

• Minimal cover 3:
 \{A\rightarrow B, B\rightarrow A, A\rightarrow C, C\rightarrow A\}

• Any more?

• *In what sense is a minimal cover “minimal”*?
Keys and Superkeys

• Assume \(S \) is our underlying relation schema

• A \textit{superkey} is a set \(X \) of attributes such that \(X^+ \) contains every attribute of \(S \)

• A \textit{key} is a superkey \(X \) that does not contain any other superkey
 – That is, if \(Y \subseteq X \) then \(Y \) is not a superkey
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints [Complimentary]
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
Example

- \(R(A,B,C,D,E,F) \) \{A \rightarrow BC , CD \rightarrow EF\}
- Prove that \(AD \rightarrow F \) is entailed (holds in any consistent database)

- A \rightarrow BC \) implies A \rightarrow C
- A \rightarrow C \) implies that AD \rightarrow CD
- AD \rightarrow CD \) and CD \rightarrow EF imply AD \rightarrow EF
- AD \rightarrow EF \) implies \(AD \rightarrow F \)
Mechanically Proving FD Entailment

• Conceptually, to prove $F \models X \rightarrow Y$ we need to consider every possible relation that satisfies F, and check whether $X \rightarrow Y$ holds.
• But so far, for each such proof we have found a finite argument.
• *Can we detect entailment algorithmically?*
• Yes! Using a *proof system*
 – Later, we will see an efficient (not just computable) proof procedure.
Proof System

• A *proof system* is a collection of rules/patterns of the form “if you know x then infer y”

• A *proof* of a statement \(\text{stmt} \) is:
 – A sequence of rule applications over the facts inferred so far
 • Each application infers new facts
 – starting with what is known
 – ending with \(\text{stmt} \)

• A proof system is:
 – *Sound* if every provable fact is correct
 – *Complete* if every correct fact is provable
• Think of proof systems for inferring FDs from a known set of FDs... (“if you know some FDs, then you can infer a new FD”)
 – Can you give an easy example of a sound (not necessarily complete) proof system?
 – Can you give an easy example of a complete (not necessarily sound) proof system?
• (Class worksheet)
Armstrong’s Axioms

Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$

Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
Example Revisited

Reflexivity: If \(Y \subseteq X \) then \(X \rightarrow Y \)

Augmentation: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \)

Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

- \(R(A, B, C, D, E, F) \) \{ \(A \rightarrow BC \), \(CD \rightarrow EF \) \}; prove \(AD \rightarrow F \)
 - \(A \rightarrow BC \) implies \(A \rightarrow C \)
 - Reflexivity, Transitivity
 - \(A \rightarrow C \) implies that \(AD \rightarrow CD \)
 - Augmentation
 - \(AD \rightarrow CD \) and \(CD \rightarrow EF \) imply \(AD \rightarrow EF \)
 - Transitivity
 - \(AD \rightarrow EF \) implies \(AD \rightarrow F \)
 - Reflexivity, Transitivity
Provable Rules

Armstrong’s Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflexivity:</td>
<td>If $Y \subseteq X$ then $X \rightarrow Y$</td>
</tr>
<tr>
<td>Augmentation:</td>
<td>If $X \rightarrow Y$ then $XZ \rightarrow YZ$</td>
</tr>
<tr>
<td>Transitivity:</td>
<td>If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$</td>
</tr>
</tbody>
</table>

Decomposition

- Decomposition: If $X \rightarrow YZ$ then $X \rightarrow Y$
 - Reflexivity & transitivity

Union

- Union: If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
 - $X \rightarrow Y$ implies $XZ \rightarrow YZ$ (augmentation)
 - $X \rightarrow Z$ implies $XX \rightarrow XZ$ (augmentation); same as $X \rightarrow XZ$
 - $X \rightarrow XZ$ and $XZ \rightarrow YZ$ implies $X \rightarrow YZ$ (transitivity)
Entailment vs. Proof

• Recall: $F \models X \rightarrow Y$ denotes that $X \rightarrow Y$ is entailed by F
 – Whenever F holds, so does $X \rightarrow Y$

• By $F \vdash X \rightarrow Y$ we denote that $X \rightarrow Y$ is provable from F using Armstrong's axioms
 – There is proof starting with F ending with $X \rightarrow Y$

• Example: $F=\{A \rightarrow B, BC \rightarrow D\}$
 – Clearly, $F \models AC \rightarrow D$ is true
 – But is $F \vdash AC \rightarrow D$ true?
 • If so, a proof is required
Soundness and Completeness

THEOREM: Armstrong’s axioms form a sound and complete proof system for FDs

- That is, every **provable** FD is **correct**, and every **correct** FD is **provable**
- In notation, for all F, X, Y we have

 \[F
 \models X \rightarrow Y \iff F \vdash X \rightarrow Y \]

- Hence, Armstrong’s axioms fully capture the implication dependencies among FDs
Proof

• We need to prove two things:
 1. Soundness
 2. Completeness

• Proving soundness is straightforward: the axioms are correct, so derived facts are correct, ...so end conclusions are correct
 – For complete formality, use induction
• Proving completeness is more involved
Proof of Completeness (1)

• We assume that \(F \models X \rightarrow Y \)
• We need to prove that \(F \vdash X \rightarrow Y \)

• Proof:
 – Denote by \(X^\dagger \) the set \(\{ A \mid F \models X \rightarrow A \} \)
 – We will show that \(Y \subseteq X^\dagger \)
 – Why is it enough? Since then \(X \rightarrow Y \) is proved by repeatedly using union
 • Recall – we showed that union is provable
 – ... and we are done
Proof of Completeness (2)

- We assume that $F \models X \rightarrow Y$
- We need to prove that $Y \subseteq X^\vdash = \{ A \mid F \vdash X \rightarrow A \}$
- Suppose, by way of contradiction, that $Y \not\subseteq X^\vdash$
- Assuming $Y \not\subseteq X^\vdash$, we construct a relation r s.t.:
 - r violates $X \rightarrow Y$ (Claim 1, Claim 2)
 - $r \models F$ (Claim 3)
 - This contradicts $F \models X \rightarrow Y$
- Conclusion $Y \subseteq X^\vdash$
Proof of Completeness (3)

- **Construction:**
 - Let X^c be the set of attributes that are not in X^r
 - Observe that $Y \cap X^c \neq \emptyset$ (our assumption)
 - Construct a relation r with two tuples t and u:
 - $t[X^r] = u[X^r] = (0, ..., 0)$
 - $t[X^c] = (1, ..., 1)$
 - $u[X^c] = (2, ..., 2)$

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Proof of Completeness (4)

- **Claim 1**: $X \subseteq X^\rightarrow$

 - Proof: apply *reflexivity* to each $A \in X$
Proof of Completeness (5)

- **Claim 2:** \(r \) violates \(X \rightarrow Y \)

 - Proof:
 - \(t \) and \(u \) agree on \(X \), due to **Claim 1**
 - \(t \) and \(u \) disagree on \(Y \), since \(Y \cap X^c \neq \emptyset \)

\[
\begin{array}{cccccccc}
A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 \\
t & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
u & 0 & 0 & 0 & 0 & 2 & 2 & 2 \\
\end{array}
\]
Proof of Completeness (6)

• **Claim 3**: \(r \) satisfies \(F \)
 – Proof:

 • Let \(Z \rightarrow W \) be an FD in \(F \); we need to prove that \(r \) satisfies \(Z \rightarrow W \)

 • If \(Z \not\subseteq X^+ \) then \(u \) and \(t \) disagree on \(Z \), and we are done; so suppose that \(Z \subseteq X^+ \)

 • Then \(F \vdash X \rightarrow Z \) (**union**), hence \(F \vdash X \rightarrow W \) (**transitivity**), hence \(F \vdash X \rightarrow A \) for every \(A \in W \) (**decomposition**)

 • We conclude that \(W \subseteq X^+ \)

 • Hence, \(u \) and \(t \) agree on \(W \), and \(r \) satisfies \(Z \rightarrow W \)
Some observations

• The closure F^+ of F is the set of all the FDs entailed by F

• The closure F^+ of F is the set of all the FDs provable from F

• Notation:

 X^+ = \{A \mid F \models X \rightarrow A\} = \{A \mid (X \rightarrow A) \in F^+\}

 X^+ = \{A \mid F \vdash X \rightarrow A\} = \{A \mid (X \rightarrow A) \in F^+\}

• Simple claim: $Y \subseteq X^+$ iff $F \vdash X \rightarrow Y$
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints [Complimentary]
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
Computational Problems (1)

Closure Computation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Compute X^+</td>
</tr>
<tr>
<td>A set X of attributes</td>
<td></td>
</tr>
</tbody>
</table>

Entailment Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Determine whether $F \models X \rightarrow Y$</td>
</tr>
<tr>
<td>An FD $X \rightarrow Y$</td>
<td></td>
</tr>
</tbody>
</table>

Recall: we always assume an underlying relation schema!

Equivalence Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets F and G of FDs</td>
<td>Determine whether $F^+ = G^+$</td>
</tr>
</tbody>
</table>

52
Computational Problems (2)

Key Generation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set F of FDs</td>
<td>Find a key</td>
</tr>
</tbody>
</table>

Key Generation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set F of FDs</td>
<td>Compute a minimal cover of F</td>
</tr>
</tbody>
</table>

Recall: we always assume an underlying relation schema!
Computing the Closure of an Attribute Set

Closure(X,F) {
 $V := X$
 while(V changes) {
 for all ($Y \rightarrow Z$ in F) {
 if ($Y \subseteq V$)
 $V := V \cup Z$
 }
 }
 return V
}

Example:
$F=$\{AB→C, A→B, BC→D, CE→F\}
$X=$\{A\}

<table>
<thead>
<tr>
<th>$Y \rightarrow Z$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB→C</td>
<td>{A}</td>
</tr>
<tr>
<td>A→B</td>
<td>{A,B}</td>
</tr>
<tr>
<td>BC→D</td>
<td>{A,B}</td>
</tr>
<tr>
<td>CE→F</td>
<td>{A,B}</td>
</tr>
<tr>
<td>AB→C</td>
<td>{A,B,C}</td>
</tr>
<tr>
<td>BC→D</td>
<td>{A,B,C,D}</td>
</tr>
<tr>
<td>CE→F</td>
<td>{A,B,C,D}</td>
</tr>
</tbody>
</table>

\{A,B,C,D\}
Correctness and Running Time

- Correctness is due to the completeness of Armstrong’s axioms: \(X \rightarrow Y \) is provable by applying the axioms iff \(Y \subseteq \text{Closure}(X) \)
 - Formal proof omitted (out of scope)

- Running time:
 - Suppose that \(R \) contains \(n \) attributes
 - Let \(m \) be the total # of attribute occurrences in \(F \)
 - With reasonable data structures, \(O(nm) \) time
 - Can be improved to run in time \(O(|X|+m) \)
 - [Beeri & Bernstein, 1979]
Implication Testing

Given:

- A set \(F \) of FDs
- An FD \(X \rightarrow Y \)

Goal:

Determine whether \(F \models X \rightarrow Y \)

\[
\text{IsImpplied}(X,Y,F) \{
 \text{if} \ (Y \subseteq \text{Closure}(X,F)) \ \text{return} \ \text{true}

 \text{else return} \ \text{false}
\}
\]
Equivalence Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets F and G of FDs</td>
<td>Determine whether $F^+ = G^+$</td>
</tr>
</tbody>
</table>

IsEquiv(F, G) {
 for all $X \rightarrow Y$ in F
 if (!IsImplied(X, Y, G)) return false
 for all $X \rightarrow Y$ in G
 if (!IsImplied(X, Y, F)) return false
 return true
}
Key Generation

Given:
- A set F of FDs

Goal:
- Find a key

FindKey(F, R(A_1, ..., A_n)) {
 K = \{A_1, ..., A_n\}
 for (i=1, ..., n) {
 if (A_i \in \text{Closure}(K\{A_i\}, F))
 K := K\{A_i\}
 }
 return K
}

Example:
R(A,B,C)
F={B\rightarrow A, AB\rightarrow C}

<table>
<thead>
<tr>
<th>K</th>
<th>A_i</th>
<th>K{A_i}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B,C</td>
<td>A</td>
<td>B,C</td>
</tr>
<tr>
<td>B,C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B,C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{B}
Proof of Correctness (1)

• **Claim 1:** Throughout the execution, \(K \) is always a superkey
 – Proof: Induction on iteration \(i \)
 • Induction hypothesis: at start of iteration \(i \),
 \[K^+ = \{A_1,\ldots,A_n\} \]
 • Basis \((i=1)\): Initial \(K \) contains all attributes
 • Inductive step: If \(A_i \in (K\setminus\{A_i\})^+ \) then
 \[K \subseteq (K\setminus\{A_i\})^+ \]
 and then
 \[\{A_1,\ldots,A_n\} = K^+ \subseteq ((K\setminus\{A_i\})^+)^+=(K\setminus\{A_i\})^+ \]
Proof of Correctness (2)

• Let Q be the returned K

• **Claim 2:** Q is minimal

 – Proof: by way of contradiction

 • Suppose $Q' \not\subseteq Q$ is a superkey, and let $A_i \in Q \setminus Q'$

 • Then $Q \setminus \{A_i\}$ is a superkey *(why?)*

 • In the i'th iteration of handling A_i we have $Q \subseteq K$ (since we only delete from K), so $Q \setminus \{A_i\} \subseteq K \setminus \{A_i\}$

 • But then, $Q \setminus \{A_i\}$ is a superkey, and so $K \setminus \{A_i\}$ is a superkey, and in particular $A_i \in (K \setminus \{A_i\})^+$

 • So A_i should have been removed!
Minimal Covering

Key Generation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set F of FDs</td>
<td>Find a minimal cover of F</td>
</tr>
</tbody>
</table>

MinCover(F) {
 $G := \{ X \rightarrow A \mid A \in Y \text{ for some } X \rightarrow Y \text{ in } F \}$

 while(G changes) {
 if(G contains $X \rightarrow A$ s.t. $A \in \text{Closure}(X, \ G\{X \rightarrow A\})$)
 $G := G\{X \rightarrow A\}$

 if(G contains $XB \rightarrow A$ s.t. $A \in \text{Closure}(X, \ G)$)
 $G := (G\{XB \rightarrow A\}) \cup \{X \rightarrow A\}$
 }

 return G
}
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints [Complimentary]
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
The rest of the presentation is not in the official course material.

OPTIONAL MATERIAL
Additional Types of Constraints

- So far we have been looking at functional dependencies, and the special cases of superkeys and keys
- Next, we consider two additional types:
 - Multivalued Dependency (MVD)
 - Inclusion Dependency (IND)
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints [Complimentary]
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
Example of Multivalued Dependency

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

Why is this table “badly” designed? Are there any FDs?

\[\text{student} \rightarrow \text{faculty} \quad \text{student} \rightarrow \text{phone} \quad \text{student} \rightarrow \text{course} \]
Multivalued Dependency

- Let s be a relation schema
- A *multivalued dependency* (MVD) has the form $X \rightarrow Y$ where X and Y are *disjoint* sets of attributes
- A relation r satisfies $X \rightarrow Y$ if
 - Informally: for every two tuples that agree on X, swapping their Y component doesn’t change r
 - For every tuples t_1 and t_2 with $t_1[X] = t_2[X]$ there exists a tuple t_3 with
 - $t_3[X] = t_1[X] = t_2[X]$
 - $t_3[s \setminus (XY)] = t_1[s \setminus (XY)]$
 - $t_3[Y] = t_2[Y]$
Any Other MVDs?

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

student ➞ phone student ➞ course
Some Properties (Exercise / Assignment)

• Every FD is an MVD
• If $X \rightarrow Y$ then $X \rightarrow S \setminus (XY)$
• An MVD $X \rightarrow Y$ is *trivial* (always holds) if and only if $Y = \emptyset$ or $Y = S \setminus X$
• If X, Y, Z are pairwise disjoint, then $X \rightarrow Y$ and $Y \rightarrow Z$ imply $X \rightarrow Z$
Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints [Complimentary]
 - Multivalued Dependencies
 - Inclusion Dependencies
Example of Inclusion Dependencies

<table>
<thead>
<tr>
<th>Student</th>
<th>Posting</th>
<th>Likes</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>id</td>
<td>student</td>
</tr>
<tr>
<td>Alma</td>
<td>23</td>
<td>Alma</td>
</tr>
<tr>
<td>Amir</td>
<td>45</td>
<td>Amir</td>
</tr>
<tr>
<td>Ahuva</td>
<td>76</td>
<td>Ahuva</td>
</tr>
<tr>
<td></td>
<td>79</td>
<td>Ahuva</td>
</tr>
</tbody>
</table>

Likes[student] ⊆ Student[name] Likes[posting] ⊆ Posting[id]
Posting[owner] ⊆ Student[name]

<table>
<thead>
<tr>
<th>Grad</th>
<th>StudentGrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>prof,student</td>
</tr>
<tr>
<td>Alma</td>
<td>Anna, Amir</td>
</tr>
<tr>
<td>Amir</td>
<td>Anna, Ahuva</td>
</tr>
<tr>
<td>Ahuva</td>
<td>Ahmed</td>
</tr>
</tbody>
</table>

A prof. receives a grant for a student only if she advises that student.
Definition of an Inclusion Constraint

• Let S be a relational schema
 – Recall: S consists of several relation schemas

• An *Inclusion Dependency* (IND) has the following form $R[A_1,\ldots,A_m] \subseteq S[B_1,\ldots,B_m]$
 where:
 – R and S are relation names in S
 – A_1,\ldots,A_m are distinct attributes of R
 – B_1,\ldots,B_m are distinct attributes of S

• Semantics: $\pi_{A_1,\ldots,A_m}(R) \subseteq \pi_{B_1,\ldots,B_m}(S)$
Examples

• What is the meaning of the following IND?
 Grad[name] ⊆ StudentGrant[student]

• What does the following mean about the binary relation $R(A,B)$:
 $$R[A,B] ⊆ R[B,A]$$
Sound and Complete System for INDs

• Like FDs, INDs have a simple sound and complete proof system (proof not covered):

 – Reflexivity: \(R[X] \subseteq R[X] \)

 – Projection: If \(R[A_1,\ldots,A_m] \subseteq S[B_1,\ldots,B_m] \) then for every sequence \(i_1,\ldots,i_k \) of distinct indices in \(\{1,\ldots,m\} \) we have \(R[A_{i_1},\ldots,A_{i_k}] \subseteq S[B_{i_1},\ldots,B_{i_k}] \)

 – Transitivity: If \(R[X] \subseteq S[Y] \) and \(S[Y] \subseteq T[Z] \) then \(R[X] \subseteq T[Z] \)