Logic in CS and Databases

• Logic has had an immense impact on CS
• Computing has strongly driven one particular branch of logic: finite model theory
 – That is, (FO/SO) logic restricted to finite models
 – Tight connections to complexity theory!
 – The basis of branches in Artificial Intelligence
• Natural tool to capture and attack fundamental problems in database management
 – Relations as first-class citizens
 – Inference for assuring data integrity
 – Inference for question answering (queries)
• Used for developing and analyzing the relational model from the early days (Codd, 1972)
Outline

• Crash course on First-Order Logic (FOL)
 • Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
 • Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
3 Components of FOL

1. FO language
 – *What are the allowed syntactic expressions?*
 – DB world: schema, constraints, query language

2. Interpretation
 – *Mapping symbols to an actual world*
 – DB world: database

3. Semantics
 – *When is a statement “true” under some interpretation?*
 – DB world: meaning of constraint satisfaction and query results
Components of FOL: (1) FO Language

- **Alphabet**: symbols in use
 - Variables, constants, **function** symbols, **predicate** symbols, connectives, quantifiers, punctuation symbols

- **Term**: expression that stands for an *element*
 - Variable, constant
 - Inductively $f(t_1,\ldots,t_n)$ where t_i are terms, f a function symbol

- **(Well-formed) formula**: parameterized statement
 - *Atom* $p(t_1,\ldots,t_n)$ where p is a predicate symbol, t_i terms
 - Inductively, for formulas F, G, variable X:
 \[
 F \land G \quad F \lor G \quad \neg F \quad F \rightarrow G \quad F \leftrightarrow G \quad \forall X F \quad \exists X F
 \]

- A **first-order language** refers to the set of all formulas over an alphabet
Components of FOL: (2) Interpretation

• An *interpretation* INT for an alphabet consists of:
 – A non-empty set Dom, called *domain*
 – An assignment of an element in Dom to each constant symbol
 – An assignment of a function $\text{Dom}^n \rightarrow \text{Dom}$ to each n-ary function symbol
 – An assignment of a function $\text{Dom}^n \rightarrow \{\text{true, false}\}$ (i.e., a relation) to each n-ary predicate symbol
Components of FOL: (3) Semantics

- A **variable assignment** to a formula in an interpretation \(\text{INT} \) assigns to each **free variable** \(X \) a value from \(\text{Dom} \)
 - A **free variable** is one used without quantification, e.g., \(\text{Person}(X), \exists Y \text{Married}(X,Y) \) (more formal definition later)

- **Truth value** for formula \(F \) under interpretation \(\text{INT} \) and variable assignment \(V \):
 - Atom \(p(t_1,\ldots,t_n): q(s_1,\ldots,s_n) \) where \(q \) is the interpretation of the predicate \(p \) and \(s_i \) the interpretation of \(t_i \)
 - \(F \land G \quad F \lor G \quad \neg F \quad F \rightarrow G \quad F \leftrightarrow G \): according to truth table
 - \(\exists X F \): true iff there exists \(d \in \text{Dom} \) such that if \(V \) assigns \(d \) to \(X \) then the truth value of \(F \) is true; otherwise false
 - \(\forall X F \): true iff for all \(d \in \text{Dom} \), if \(V \) assigns \(d \) to \(X \) then the truth value of \(F \) is true; otherwise false

- If a formula has no free vars (closed formula), we can simply refer to its truth value under \(\text{INT} \)
Outline

• Crash course on First-Order Logic (FOL)

• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA

• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
1. RC = FOL over DB
2. RC can express “bad queries” that depend not only on the DB, but also on the domain from which values are taken [domain dependence]
3. We cannot test whether an RC query is “good,” but we can use a ”good” subset of RC that captures all “good” queries [safety]
4. “Good” RC and RA can express the same queries! [equivalence]
Relational Calculus (RC)

• RC is, essentially, first-order logic (FO) over the schema relations
 – A query has the form “find all tuples \((x_1,\ldots,x_k)\) such that \(F(x_1,\ldots,x_k)\) holds”

• RC is a *declarative* query language
 – Meaning: a query is not defined by a sequence of operations, but rather by a condition that the result should satisfy
Outline

• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
Which relatives does this query find?
RC Symbols

• Constant values: a, b, c, ...
 – Values that may appear in table cells

• Variables: x, y, z, ...
 – Range over the values that may appear in table cells

• Relation symbols: R, S, T, Person, Parent, ...
 – Each with a specified arity
 – Will be fixed by the relational schema at hand
 – No attribute names, only attribute positions!

• Unlike general FOL, no function symbols!
Atomic RC Formulas

• Atomic formulas:
 – $R(t_1, \ldots, t_k)$
 • R is a k-ary relation
 • Each t_i is a variable or a constant
 • Semantically it states that (t_1, \ldots, t_k) is a tuple in R
 • Example: $\text{Person}(x, \text{'female'}, \text{'Canada'})$
 – $x \ op \ u$
 • x is a variable, u is a variable/constant, op is one of $>, <, =, \neq$
 • Simply binary predicates, predefined interpretation
 • Example: $x=y, z>5$
• Formula:
 – Atomic formula
 – If ϕ and ψ are formulas then these are formulas:
 \[\begin{align*}
 \phi \land \psi & \quad \phi \lor \psi & \quad \phi \rightarrow \psi & \quad \phi \rightarrow \psi & \quad \neg \phi & \quad \exists x \phi & \quad \forall x \phi
 \end{align*} \]

 \[\begin{align*}
 \text{Person}(u, \text{'female'}, \text{'Canada'}) \land \\
 \exists y, z \left[\text{Parent}(z, y) \land \text{Parent}(y, x) \land \\
 \exists w \left[\text{Parent}(z, w) \land y \neq w \land (u = w \lor \text{Spouse}(u, w)) \right]\right]
 \end{align*} \]
Free Variables

• Variables not bound to quantifiers

• Formally:

 – A free variable of an atomic formula is a variable that occurs in the atomic formula

 – A free variable of $\varphi \land \psi, \varphi \lor \psi, \varphi \rightarrow \psi$ is a free variable of either φ or ψ

 – A free variable of $\neg \varphi$ is a free variable of φ

 – A free variable of $\exists x \varphi$ and $\forall x \varphi$ is a free variable y of φ such that $y \neq x$

• We write $\varphi(x_1, \ldots, x_k)$ to states that x_1, \ldots, x_k are the free variables of φ (in some order)
What Are the Free Variables?

Person(\(u\), 'female', 'Canada') \land
\exists y, z \left[\text{Parent}(z, y) \land \text{Parent}(y, x) \land \exists w \left[\text{Parent}(z, w) \land y \neq w \land \right.
ight.
\left(u = w \lor \text{Spouse}(u, w) \right) \left. \right) \right] \right] \]

Notation: \(\varphi(x, u) \), CandianAunt(\(u, x\)), …
Relation Calculus Query

- An **RC query** is an expression of the form
 \[
 \{ \langle x_1, \ldots, x_k \rangle \mid \varphi(x_1, \ldots, x_k) \}
 \]
 where \(\varphi(x_1, \ldots, x_k) \) is an RC formula

- An RC query is **over** a relational schema \(S \) if all the relation symbols belong to \(S \) (with matching arities)
RC Query

\{ (x,u) \mid \text{Person}(u, 'female', 'Canada') \land \\
\exists y,z [\text{Parent}(z,y) \land \text{Parent}(y,x) \land \\
\exists w [\text{Parent}(z,w) \land y \neq w \land \\
(u=w \lor \text{Spouse}(u,w))]] } \}

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)
Who took all core courses?

$$\text{Studies} \div \pi_{\text{course}} \sigma_{\text{type}=\text{core}} \text{CourseType}$$
R=S in Primitive RA vs. RC

\[R(X,Y) \div S(Y) \]

In RA:
\[\pi_X R \setminus \pi_X \left((\pi_X R \times S) \setminus R \right) \]

In RC:
\[\{ (X) \mid \exists Z \left[R(X,Z) \right] \land \forall Y \left[S(Y) \rightarrow R(X,Y) \right] \} \]
• There are two common variants of RC:
 – **DRC**: *Domain Relational Calculus* (what we're doing)
 – **TRC**: *Tuple Relational Calculus*

• DRC applies vanilla FO: terms interpreted as *attribute values*, relations have *arity* but no *attribute names*

• TRC is more “database friendly”: terms interpreted as *tuples* with *named attributes*

• There are easy conversions between the two formalisms (nothing deep)
[Complimentary] Our Example in TRC

\{ t | \exists a [a \in \text{Person} \land a[\text{gender}] = 'female' \land a[\text{country}] = 'Canada'] \land \\
\exists p, q [p \in \text{Parent} \land p[\text{child}] = t[\text{nephew}] \land \\
q \in \text{Parent} \land q[\text{child}] = p[\text{parent}] \land \\
\exists w [w \in \text{Parent} \land w[\text{parent}] = q[\text{parent}] \land \\
w[\text{child}] \neq q[\text{child}] \land ((t[\text{aunt}] = w[\text{child}] \land t[\text{aunt}] = a[id]) \lor \exists s [s \in \text{Spouse} \land \\
s[\text{person1}] = w[\text{child}] \land s[\text{person2}] = t[\text{aunt}] \land t[\text{aunt}] = a[id]])}
Outline

• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
What is the Meaning of the Following?

\[
\{ (x) \mid \neg \text{Person}(x, 'female', 'Canada') \}
\]

\[
\{ (x,y) \mid \exists z [\text{Spouse}(x,z) \land y=z] \}
\]

\[
\{ (x,y) \mid \exists z [\text{Spouse}(x,z) \land y\neq z] \}
\]

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)
Bringing in the Domain

• Let S be a schema, let D be a database over S, and let Q be an RC query over S

• D gives an interpretation for the underlying FOL
 – Predicates \rightarrow relations; constants copied; no functions
 – … almost! What is the domain?

• The active domain (of D and Q) is the set of all the values that occur in either D or Q

• The query Q is evaluated over D with respect to a domain Dom that contains the active domain

• Denote by $Q^{\text{Dom}}(D)$ the result of evaluating Q over D relative to the domain Dom
Domain Independence

• Let \mathbf{S} be a schema, and let Q be an RC query over \mathbf{S}

• We say that Q is *domain independent* if for every database D over \mathbf{S} and every two domains Dom_1 and Dom_2 that contain the active domain, we have:

$$Q^{\text{Dom}_1}(D) = Q^{\text{Dom}_2}(D)$$
Which One is Domain Independent?

\{ (x) | \neg \text{Person}(x, 'female', 'Canada') \} \\
\{ (x,y) | \exists z \left[\text{Spouse}(x,z) \land y=z \right] \} \\
\{ (x,y) | \exists z \left[\text{Spouse}(x,z) \land y \neq z \right] \} \\
\{ (x) | \exists z,w \text{ Person}(x,z,w) \land \exists y \left[\neg \text{Likes}(x,y) \right] \} \\
\{ (x) | \exists z,w \text{ Person}(x,z,w) \land \forall y \left[\neg \text{Likes}(x,y) \right] \} \\
\{ (x) | \exists z,w \text{ Person}(x,z,w) \land \forall y \left[\neg \text{Likes}(x,y) \right] \land \exists y \left[\neg \text{Likes}(x,y) \right] \} \\

- \text{Person}(id, gender, country) \\
- \text{Likes}(person1, person2) \\
- \text{Spouse}(person1, person2)
Which One is Domain Independent?

\[
\begin{align*}
\{ & (x) \mid \neg \text{Person}(x, \text{'female'}, \text{'Canada'}) \} & & \text{Not DI} \\
\{ & (x, y) \mid \exists z \ [\text{Spouse}(x, z) \land y = z] \} & & \text{DI} \\
\{ & (x, y) \mid \exists z \ [\text{Spouse}(x, z) \land y \neq z] \} & & \text{DI} \\
\{ & (x) \mid \exists z, w \ \text{Person}(x, z, w) \land \forall y \ [\neg \text{Likes}(x, y)] \} & & \text{DI} \\
\{ & (x) \mid \exists z, w \ \text{Person}(x, z, w) \land \forall y \ [\neg \text{Likes}(x, y)] \} & & \text{DI} \\
\{ & (x) \mid \exists z, w \ \text{Person}(x, z, w) \land \forall y \ [\neg \text{Likes}(x, y)] \land \exists y \ [\neg \text{Likes}(x, y)] \} & & \text{DI}
\end{align*}
\]

- Person(id, gender, country)
- Likes(person1, person2)
- Spouse(person1, person2)
Bad News...

• We would like be able to tell whether a given RA query is domain independent,
 — ... and then reject “bad queries”

• Alas, this problem is undecidable!
 — That is, there is no algorithm that takes as input an RC query and returns true iff the query is domain independent
Domain-independent RC has an effective syntax; that is:

- A syntactic restriction of RC in which every query is domain independent
 - Restricted queries are said to be safe
- Safety can be tested automatically (and efficiently)
- Most importantly, for every domain independent RC query there exists an equivalent safe RC query!
Safety

• We do not formally define the safe syntax in this course
• Details on the safe syntax can be found in the textbook *Foundations of Databases* by Abiteboul, Hull and Vianu
 – Example:
 • In $\exists x \varphi$, the variable x should be *guarded* by φ
 • Every variable is guarded by $R(x_1,\ldots,x_k)$
 • In $\varphi \land (x=y)$, the variable x is guarded if and only if either x or y is guarded by φ
 • ... and so on
Outline

• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
Example Revisited

\[R(X,Y) \div S(Y) \]

In RA:
\[\pi_X R \setminus \pi_X \left((\pi_R X \times S) \setminus R \right) \]

In RC:
\[\{ (X) \mid \exists Z \left[R(X,Z) \right] \land \forall Y \left[S(Y) \rightarrow R(X,Y) \right] \} \]
Another Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

\[
\{ (x) \mid \exists z, w \text{ Person}(x, z, w) \land \forall y [\neg \text{Spouse}(x, y)] \}\n\]

\[
\pi_{id}\text{Person} \setminus \rho_{\text{person1/id}}\pi_{\text{person1}}\text{Spouse}
\]
THEOREM: RA and domain-independent RC have the same expressive power.

More formally, on every schema S:

- For every RA expression E there is a domain-independent RC query Q such that $Q \equiv E$
- For every* domain-independent RC query Q there is an RA expression E such that $Q \equiv E$

* Technicality: we consider only queries that output values from the database (otherwise we need to extend RA accordingly…*)
The proof has two directions:

1. Translate a given RA query into an equivalent RC query
2. Translate a given RC query into an equivalent RA query

Part 1 is fairly easy: induction on the size of the RA expression

Part 2 is more involved
Intuition on RA \rightarrow RC

- Construction by induction
- Technicality: need to maintain a mapping between attribute names and variables (simple)

<table>
<thead>
<tr>
<th>RA</th>
<th>RC</th>
</tr>
</thead>
<tbody>
<tr>
<td>R (n columns)</td>
<td>$R(X_1,\ldots,X_n)$</td>
</tr>
<tr>
<td>$E_1 \times E_2$</td>
<td>$F_1 \land F_2$ disjoint variables (rename)</td>
</tr>
<tr>
<td>$E_1 - E_2$</td>
<td>$F_1 \land \neg F_2$ use identical variables (rename)</td>
</tr>
<tr>
<td>$E_1 \cup E_2$</td>
<td>$F_1 \lor F_2$ use identical variables (rename)</td>
</tr>
<tr>
<td>$\Pi_{a_1,\ldots,a_k}(E_1)$</td>
<td>$\exists X_1 \ldots \exists X_m F_1$ where X_1,\ldots,X_m are the variables not among a_1,\ldots,a_k</td>
</tr>
<tr>
<td>$\sigma_c(E_1)$</td>
<td>$F_1 \land c$</td>
</tr>
</tbody>
</table>

Here, F_i is the formula constructed for E_i
1. RC = FOL over DB

2. RC can express “bad queries” that depend not only on the DB, but also on the domain from which values are taken [domain dependence]

3. We cannot test whether an RC query is “good,” but we can use a ”good” subset of RC that captures all “good” queries [safety]

4. “Good” RC and RA can express the same queries! [equivalence]
• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA

• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
Datalog

- Database query language
- “Clean” restriction of Prolog with DB access
 - Expressive & declarative:
 - *Set-of-rules* semantics
 - Independence of execution order
 - Invariance under logical equivalence
- Mostly academic implementations; some commercial instantiations

Path(x, y) ← Edge(x, y)
Path(x, z) ← Edge(x, y), Path(y, z)
InCycle(x) ← Path(x, x)
Outline

• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Invited(y) ← Relative('myself', y), Local(y)
Local(x) ← Person(x, y, 'IL')
Relative(x, x) ← Person(x, y, z)
Relative(x, y) ← Relative(x, z), Parent(z, y)
Relative(x, y) ← Relative(x, z), Parent(y, z)
Relative(x, y) ← Relative(x, z), Spouse(z, y)

Sometimes :- used instead of ←, e.g.,

Local(x) :- Person(x, y, 'IL')
EDBs and IDBs

- Datalog rules operate over:
 - **Extensional Database (EDB)** predicates
 - These are the provided/stored database relations from the relational schema
 - **Intentional Database (IDB)** predicates
 - These are the relations *derived* from the stored relations through the rules
Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Local(x) \Leftarrow Person(x, y, 'IL')
Relative(x, x) \Leftarrow Person(x, y, z)
Relative(x, y) \Leftarrow Relative(x, z), Parent(z, y)
Relative(x, y) \Leftarrow Relative(x, z), Parent(y, z)
Relative(x, y) \Leftarrow Relative(x, z), Spouse(z, y)
Invited(y) \Leftarrow Relative('myself', y), Local(y)

EDB
IDB
Datalog Program

- An *atomic formula* has the form $R(t_1,\ldots,t_k)$ where:
 - R is a k-ary relation symbol
 - Each t_i is either a constant or a variable
- A *Datalog rule* has the form
 \[
 \text{head} \leftarrow \text{body}
 \]
 where *head* is an atomic formula and *body* is a sequence of atomic formulas
 - For simplicity, we disallow constants in the head
- A *Datalog program* is a set of Datalog rules
Logical Interpretation of a Rule

• Consider a Datalog rule of the form

\[R(x) \leftarrow \psi_1(x,y), \ldots, \psi_m(x,y) \]

– Here, \(x \) and \(y \) are disjoint sequences of variables, and each \(\psi_i(x,y) \) is an atomic formula with variables among \(x \) and \(y \)

– Example: \(\text{TwoPath}(x_1,x_2) \leftarrow \text{Edge}(x_1,y), \text{Edge}(y,x_2) \)

• The rule stands for the logical formula

\[\forall x \left[R(x) \leftarrow \exists y [\psi_1(x,y) \land \cdots \land \psi_m(x,y)] \right] \]

– Example: if there exists \(y \) where \(\text{Edge}(x_1,y) \) and \(\text{Edge}(y,x_2) \) hold, then \(\text{TwoPath}(x_1,x_2) \) should hold
Syntactic Constraints

- We require the following from the rule
 \[R(x) \leftarrow \psi_1(x, y), \ldots, \psi_m(x, y) \]

 1. Safety: every variable in \(x \) should occur in the body at least once
 2. The predicate \(R \) must be an IDB predicate
 - (The body can include both EDBs and IDBs)

- Example of forbidden rules:
 - \(R(x, z) \leftarrow S(x, y), R(y, x) \)
 - \(\text{Edge}(x, y) \leftarrow \text{Edge}(x, z), \text{Edge}(x, y) \)
 - Assuming Edge is EDB
Semantics of Datalog Programs

• Let S be a schema, D a database over S, and P be a Datalog program over S
 – That is, all EDBs predicates belong to S

• The result of evaluating P over D is a database I over the IDB schema of P

• We give several definitions:
A *chase* procedure is a program of the following form:

\[
\text{Chase}(P,D)
\]

- \(I := \text{empty} \)
- \(\textbf{while}(\text{true}) \) {
 - if(\(D \cup I\) satisfies all the rules of \(P\))
 - return \(I\)
 - Find a rule \(\text{head}(x) \leftarrow \text{body}(x,y)\) and tuples \(a, b\) such that \(D \cup I\) contains \(\text{body}(a,b)\) but not \(\text{head}(a)\)
 - \(I := I \cup \{\text{head}(a)\}\)
}
Nondeterminism

• Note: the chase is *underspecified* (i.e., not fully defined)

• There can be many ways of choosing the next violation to handle
 – And each choice can lead to new violations, and so on
 – We can view the choice of a new violation as *nondeterministic*
Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Relative(x,x) \iff Person(x,y,z)
Relative(x,y) \iff Relative(x,z), Parent(z,y)
Invited(y) \iff Relative('1',y)

<table>
<thead>
<tr>
<th>Person</th>
<th>Parent</th>
<th>Relative</th>
<th>Invited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Relative(x,x) \iff Person(x,y,z)
Relative(x,y) \iff Relative(x,z), Parent(z,y)
Invited(y) \iff Relative('1',y)
Example

- **Person** (id, gender, country)
- **Parent** (parent, child)
- **Spouse** (person1, person2)

Relative

- `Relative(x,x) <-> Person(x,y,z)`
- `Relative(x,y) <-> Relative(x,z), Parent(z,y)`
- `Invited(y) <-> Relative('1',y)`

Tables

<table>
<thead>
<tr>
<th>Person</th>
<th>Parent</th>
<th>Relative</th>
<th>Invited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Person

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>gender</th>
<th>country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>AU</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>FR</td>
<td></td>
</tr>
</tbody>
</table>

Parent

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Relative

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Spouse

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Relative(x,x) \iff\ Person(x,y,z)
Relative(x,y) \iff\ Relative(x,z), Parent(z,y)
Invited(y) \iff\ Relative('1',y)

<table>
<thead>
<tr>
<th>Person</th>
<th>Parent</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spouse</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative</th>
<th>Invited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Relative(x, x) ← Person(x, y, z)
Relative(x, y) ← Relative(x, z), Parent(z, y)
Invited(y) ← Relative('1', y)

<table>
<thead>
<tr>
<th>Person</th>
<th>1</th>
<th>F</th>
<th>IL</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>M</td>
<td>AU</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>IL</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>FR</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parent</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relative</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Spouse</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Invited</th>
<th>1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Relative(x,x) ← Person(x,y,z)
Relative(x,y) ← Relative(x,z), Parent(z,y)
Invited(y) ← Relative('1',y)

<table>
<thead>
<tr>
<th>Person</th>
<th>Parent</th>
<th>Relative</th>
<th>Invited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Person</th>
<th>Parent</th>
<th>Relative</th>
<th>Invited</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)
Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

\[
\text{Relative}(x,x) \iff \text{Person}(x,y,z)
\]
\[
\text{Relative}(x,y) \iff \text{Relative}(x,z), \text{Parent}(z,y)
\]
\[
\text{Invited}(y) \iff \text{Relative}('1',y)
\]

<table>
<thead>
<tr>
<th></th>
<th>Person</th>
<th>Parent</th>
<th>Relative</th>
<th>Invited</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id</td>
<td>gender</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>IL</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>AU</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>NL</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>IL</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>FR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- The `Relative` relation is used to store relationships between individuals.
- The `Parent` relation connects parents and children.
- The `Spouse` relation links two individuals as a couple.
- The `Invited` relation indicates if an individual was invited to an event.
Example

- Person(id, gender, country)
- Parent(parent, child)
- Spouse(person1, person2)

Relative(x,x) \leftrightarrow \text{Person}(x,y,z)
Relative(x,y) \leftrightarrow \text{Relative}(x,z), \text{Parent}(z,y)
Invited(y) \leftrightarrow \text{Relative}('1',y)
Model-Theoretic Definition

- We say that I is a model of P (w.r.t. D) if $D \cup I$ satisfies all the rules of P.
- We say that I is a minimal model is I does not properly contain any other model.
Theorem: For all Datalog programs P and DBs D there is a **unique** minimal model, and every chase returns this model.

Proof sketch:

1. If I_1 and I_2 are models, so are $I_1 \cap I_2$
2. Every chase returns a model
3. Pick a chase and prove by induction: If I' is a model, then every intermediate I is contained in I'

The minimal model is the *result*, denoted $P(D)$.
• We can associate with each rule an RA expression, for example:
 – path(X, Y) \texttt{\leftarrow} E(X, Y) with E
 – path(X, Y) \texttt{\leftarrow} E(X, Z), \ Path(Z, Y) with \ \pi_{1,4} (E \bowtie_{2=3} Path)

• The \textit{RA expansion} for predicate Path, denoted exp[Path], is the union:
 \ \ E \cup \pi_{1,4} (E \bowtie_{2=3} Path)

• (Implicitly rename all attributes as needed)
Another definition: minimal fixpoint

– Here, a fixpoint means a database I such that for all IDB predicates R we have
I.R=exp[R](D∪I)
Outline

• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
“Recursive” Program?

Local(x) ← Person(x,y,'IL')
Relative(x,x) ← Person(x,y,z)
Relative(x,y) ← Relative(x,z), Parent(z,y)
Relative(x,y) ← Relative(x,z), Parent(y,z)
Relative(x,y) ← Relative(x,z), Spouse(z,y)
Invited(y) ← Relative('myself',y), Local(y)

Local(x) ← Person(x,y,'IL')
Relative(x,x) ← Person(x,y,z)
Invited(y) ← Relative('myself',y), Local(y)

MayLike(x,y) ← Close(x,z), Likes(z,y)
Visit(x,y) ← MayLike(x,y)
Close(x,z) ← Visit(x,y), Visit(z,y)
• The dependency graph of a Datalog program is the directed graph \((V,E)\) where
 – \(V\) is the set of IDB predicates (relation names)
 – \(E\) contains an edge \(R \rightarrow S\) whenever there is a rule with \(S\) in the head and \(R\) in the body
• A Datalog program is recursive if its dependency graph contains a cycle
Recursive?

\[\text{Local}(x) \leftarrow \text{Person}(x,y,'IL') \]
\[\text{Relative}(x,x) \leftarrow \text{Person}(x,y,z) \]
\[\text{Relative}(x,y) \leftarrow \text{Relative}(x,z), \text{Parent}(z,y) \]
\[\text{Relative}(x,y) \leftarrow \text{Relative}(x,z), \text{Parent}(y,z) \]
\[\text{Relative}(x,y) \leftarrow \text{Relative}(x,z), \text{Spouse}(z,y) \]
\[\text{Invited}(y) \leftarrow \text{Relative}('myself',y), \text{Local}(y) \]
Local\((x) \leftarrow \text{Person}(x, y, 'IL') \)

Relative\((x, x) \leftarrow \text{Person}(x, y, z) \)

Invited\((y) \leftarrow \text{Relative}('myself', y), \text{Local}(y) \)
And This One?

\[
\begin{align*}
\text{MayLike}(x,y) & \leftarrow \text{Close}(x,z), \text{Likes}(z,y) \\
\text{Visit}(x,y) & \leftarrow \text{MayLike}(x,y) \\
\text{Close}(x,z) & \leftarrow \text{Visit}(x,y), \text{Visit}(z,y)
\end{align*}
\]
THEOREM: Datalog can express queries that RA (RC) cannot
(example: transitive closure of a graph)

Proof not covered in the course
THEOREM: Non-recursive Datalog has the same expressive power as the algebra \(\{\sigma_\equiv, \pi, \times, \rho, \cup\} \)
(where \(\sigma_\equiv \) means selection with a single equality)

Proof: exercise (not covered)

This fragment is often called “positive RA” or USPJ (union-select-project-join)
Can Datalog express difference?

Answer: No!

Proof: Datalog is monotone
- That is, if D and D' are such that every relation of D is contained in the corresponding relation of D', then $P(D) \subseteq P(D')$
Outline

• Crash course on First-Order Logic (FOL)
• Relational Calculus
 ▪ Syntax and Semantics
 ▪ Domain Independence and Safety
 ▪ Equivalence to RA
• Datalog
 ▪ Syntax and Semantics
 ▪ Recursion
 ▪ Negation
What is the Semantics?

Adding negation to Datalog is not straightforward!

Buddy\((x,y)\) ⟷ Likes\((x,y), \neg \text{Parent}(y,x)\)

Buddy\((x,y)\) ⟷ \neg \text{Buddy}(x,y), \neg \text{Anti}(x,y), \text{Likes}(x,y)

Anti\((x,y)\) ⟷ \neg \text{Buddy}(x,y), \text{Suspects}(x,y)

Likes('Avi','Alma')
Suspects('Avi','Alma')

Buddy('Avi','Alma')

Anti('Avi','Alma')
Negation in Datalog

• Various semantics have been proposed for supporting negation in Datalog
 – In a way that makes sense

• We will look at two:
 – *Semipositive* programs (restricted)
 – *Stratified* programs (standard)
A *semipositive* program is a program where only EDBs may be negated

- Safety: every variable occurs in a positive literal
 - Guarantees domain independence
- Semantics: same as ordinary Datalog programs

\[
\text{Buddy}(x, y) \leftarrow \text{Likes}(x, y), \neg \text{Parent}(y, x)
\]
Stratified Programs

• Let P be a Datalog program
• Let E_0 be set of EDB predicates
• A *stratification* of P is a partitioning of the IDB predicates into disjoint sets E_1, \ldots, E_k where:
 – For $i=1, \ldots, k$, every rule with head in E_i has body predicates only from E_0, \ldots, E_i
 – For $i=1, \ldots, k$, every rule with head in E_i can have negated body predicates only from E_0, \ldots, E_{i-1}
Example

- Person(id, gender, country)
- Fake(id)
- Parent(parent, child)
- Spouse(person1, person2)
- Likes(person1, person2)

\[
\begin{align*}
\text{RealPerson}(x) & \iff \text{Person}(x, y, z), \neg \text{Fake}(x) \\
\text{Relative}(x, x) & \iff \text{RealPerson}(x) \\
\text{Relative}(x, y) & \iff \text{Relative}(x, z), \text{Parent}(z, y) \\
\text{Relative}(x, y) & \iff \text{Relative}(x, z), \text{Parent}(y, z) \\
\text{Relative}(x, y) & \iff \text{Relative}(x, z), \text{Spouse}(z, y) \\
\text{Buddy}(x, y) & \iff \neg \text{Relative}(x, y), \text{Likes}(x, y) \\
\text{Buddy}(x, y) & \iff \neg \text{Relative}(x, y), \text{Buddy}(x, z), \text{Buddy}(z, y)
\end{align*}
\]
Another Stratification?

- Person(id, gender, country)
- Fake(id)
- Parent(parent, child)
- Spouse(person1, person2)
- Likes(person1, person2)

\[
\begin{align*}
\text{RealPerson}(x) & \leftarrow \text{Person}(x,y,z), \neg \text{Fake}(x) \\
\text{Relative}(x,x) & \leftarrow \text{RealPerson}(x) \\
\text{Relative}(x,y) & \leftarrow \text{Relative}(x,z), \text{Parent}(z,y) \\
\text{Relative}(x,y) & \leftarrow \text{Relative}(x,z), \text{Parent}(y,z) \\
\text{Relative}(x,y) & \leftarrow \text{Relative}(x,z), \text{Spouse}(z,y) \\
\text{Buddy}(x,y) & \leftarrow \neg \text{Relative}(x,y), \text{Likes}(x,y) \\
\text{Buddy}(x,y) & \leftarrow \neg \text{Relative}(x,y), \text{Buddy}(x,z), \text{Buddy}(z,y)
\end{align*}
\]
Semantics of Stratified Programs

• For $i=1,...,k$:
 – Compute the IDBs of the stratum E_i
 – Add computed IDBs to the EDBs

• Then, due to the definition of stratification, each E_i can be viewed as **semipositive**

• Does the result depend on the specific stratification of choice?
 – Answer on the next slide
Theorems on Stratification (1)

- **Theorem 1**: All stratifications are equivalent
 - That is, they give the same result on every input

- **Theorem 2**: A program has a stratification if and only if its dependency graph does not contain a cycle with a “negated edge”
 - Dependency graph is defined as previously, except that edges can be labeled with negation
 - Hence, we can test for stratifiability efficiently, via graph reachability
Theorems on Stratification (2)

• **Theorem 3:** Non-recursive Datalog programs with negation are stratifiable
 – Via the topological order

• **Theorem 4:** Nonrecursive Datalog with negation has the same expressive power as the algebra \{\sigma_-, \pi, \times, \rho, \cup, \setminus\}
 – Extendable to RA if we add the predicates >, <