The Relational Model

- A conceptual model for representing data, integrity constraints, and queries
 - All based on the notion of a schema
- DBMS is responsible for translating specifications into the physical environment at hand
 - Storage in files, caches, indexes
 - Queries translated to query plans (high-level imperative programs)
 - Query plans translated to low-level execution over stored data

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sid</th>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
<td>OS</td>
</tr>
</tbody>
</table>

The Relational Algebra (RA)

- Mathematical query language
- Introduced by Edgar Codd
- Since invention, developed and studied by Codd and many others

RA Example

Names of students who study DB:

SQL

```
SELECT T.cname
FROM S,C,T
WHERE S.name = 'Avia' AND S.ID = T.sID
AND T.cnum = C.number
```

Logic (PC)

```
(s(y,n,'Avia') ∧ C(z,x,l) ∧ T(y,z,g))
```

Logic Programming (Datalog)

```
Q(s) ← S(y,n,'Avia'), C(z,x,l), T(y,z,g).
```

Algebra (RA)

```
πC.name (σS.name = 'Avia', S.IID = T.sID, T.cnum = C.number)
```

The Relational Algebra (RA)

- Mathematical query language
- Introduced by Edgar Codd
- Since invention, developed and studied by Codd and many others

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization (enrichment)
Why RA?

- Understanding the relational algebra is a key understanding central concepts in databases: SQL, query evaluation, query optimization
- The underlying language of common query-plan optimizers
- Tool for building theoretical foundations of various query languages (e.g., SQL)
- Tool for developing novel data/query models

RA vs Other QLs

- Some subtle (yet important) differences between RA and other languages
 - Can tables have duplicate records?
 - (RA vs. SQL)
 - Are missing (NULL) values allowed?
 - (RA vs. SQL)
 - Is there any order among records?
 - (RA vs. SQL)
 - Is the answer dependent on the domain from which values are taken (not just the DB)?
 - (RA vs. RC)
- For RA, the answer to all questions is “no”
 - At least in the “textbook” model we study here

Relation Schema

- A relation schema is a finite sequence of distinct attribute names \(\text{att} \) with a mapping of each to a domain \(\text{dom} \) of legal values
- Notation: \((\text{att}_1:\text{dom}_1,...,\text{att}_k:\text{dom}_k)\)
 - Example: \((\text{sid}:\text{int}, \text{name}:\text{string}, \text{year}:\text{int})\)

Tuples

- Let \(s \) be a relation schema \((\text{att}_1:\text{dom}_1,...,\text{att}_k:\text{dom}_k)\)
- A tuple (over \(s \)) is a sequence \((v_1,...,v_k)\) of values \(v_i \), where each \(v_i \) is in \(\text{dom}_i \)
 - That is, a tuple is an element of \(\text{dom}_1 \times ... \times \text{dom}_k \)
 - Example: \((861,\text{Alma},2)\)

Relations

- A relation \(R \) is a pair \((s,r)\)
 - \(s \) is a relation schema
 - Called the header of \(R \)
 - \(r \) is a finite set of tuples over \(s \)

Ignoring Domains

- In this lecture we ignore the attribute domains, since they play no special role
 - (Well, almost; they make a difference for query equivalence, but we do not get there...)
- For example, we will write \((\text{sid}, \text{name}, \text{year})\) instead of \((\text{sid}:\text{int}, \text{name}:\text{string}, \text{year}:\text{int})\)
Notation

- Notation 1:
 - Let \(R \) be a relation with the header \((\text{att}_1, \ldots, \text{att}_k)\)
 - Let \(t=(v_1, \ldots, v_k) \) be a tuple of \(R \)
 - We refer to \(v_i \) by \(t.\text{att}_i \)

- Notation 2:
 - Let \(a_1, \ldots, a_m \) be attributes among \(\text{att}_1, \ldots, \text{att}_k \)
 - We denote by \(t[a_1, \ldots, a_m] \) the tuple \((t.a_1, \ldots, t.a_m) \)

\[
\begin{align*}
\text{sid} & \quad \text{name} & \quad \text{year} \\
861 & \quad \text{Alma} & \quad 2 \\
753 & \quad \text{Amir} & \quad 1 \\
955 & \quad \text{Ahuva} & \quad 2 \\
\end{align*}
\]

\[
\begin{align*}
\text{cid} & \quad \text{topic} \\
23 & \quad \text{PL} \\
45 & \quad \text{DB} \\
76 & \quad \text{OS} \\
\end{align*}
\]

\[
\begin{align*}
\text{sid} & \quad \text{cid} \\
861 & \quad 23 \\
753 & \quad 45 \\
955 & \quad 76 \\
\end{align*}
\]

Databases

- A database schema is a finite set of relation names, each mapped to a relation schema
 - Example: \(\text{Student}(\text{sid, name, year}) \), \(\text{Course}(\text{cid, topic}) \), \(\text{Studies}(\text{sid, cid}) \)
 - (Constraints ignored for now)

- A database (or instance) over a database schema associates with each relation schema a relation over that schema

\[
\begin{array}{ccc}
\text{Student} & \text{Course} & \text{Studies} \\
\hline
\text{sid} & \text{name} & \text{year} \\
861 & \text{Alma} & 2 \\
753 & \text{Amir} & 1 \\
955 & \text{Ahuva} & 2 \\
\text{cid} & \text{topic} \\
23 & \text{PL} \\
45 & \text{DB} \\
76 & \text{OS} \\
\text{sid} & \text{cid} \\
861 & 23 \\
753 & 45 \\
955 & 76 \\
\end{array}
\]

What is “Algebra”?

- An abstract algebra consists of:
 - A class of elements
 - A collection of operators
- Each operator:
 - Has an arity \(d \)
 - Has a domain of sequences \((e_1, \ldots, e_d) \) of elements
 - Maps every sequence in its domain to an element \(e \)
- The definition of an operator allows for composition:
 \[
 o_1 \left(o_2 \left(x \right), o_1 \left(y, o_4 \left(x, z \right) \right) \right)
 \]
- Examples:
 - Ring of integers: \((\mathbb{Z}, +, \cdot) \)
 - Boolean algebra: \((\{\text{true, false}\}, \&, \lor, \neg) \)
 - Relational algebra

The Relational Algebra

- In the relational algebra (RA) the elements are relations
 - Recall: a relation is a pair \((s, r)\)
- RA has 6 primitive operators:
 - Unary: projection, selection, renaming
 - Binary: union, difference, Cartesian product
- Each of the six is essential (independent)—we cannot define it using the others
 - We will see what exactly this means and how this can be proved
- We commonly allow many more useful operators that can be defined using the primitive ones
 - For example, intersection via difference

Outline

- Background
 - The Primitive Operators
 - Implied Operators
 - Joins
 - Division
 - Equivalence & Independence
 - Taste of Query Optimization (enrichment)
6 Primitive (Basic) Operators

1. Projection \((\pi)\)
2. Selection \((\sigma)\)
3. Renaming \((\rho)\)
4. Union \((\cup)\)
5. Difference \((\setminus)\)
6. Cartesian Product \((\times)\)

Projection by Example

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

\[\pi_{\text{sid},\text{name}}(R) = \]

\[\begin{array}{|c|c|}
\hline
\text{sid} & \text{name} \\
\hline
861 & Alma \\
753 & Amir \\
955 & Ahuva \\
\hline
\end{array} \]

More tuples (includes duplicates)

Selection by Example

<table>
<thead>
<tr>
<th>student</th>
<th>year</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>1</td>
<td>DB</td>
<td>80</td>
</tr>
<tr>
<td>Alma</td>
<td>1</td>
<td>PL</td>
<td>94</td>
</tr>
<tr>
<td>Ahuva</td>
<td>2</td>
<td>DB</td>
<td>80</td>
</tr>
</tbody>
</table>

\[\sigma_{\text{course}=\text{DB}}(R) = \]

\[\begin{array}{|c|c|c|c|}
\hline
\text{student} & \text{year} & \text{course} & \text{grade} \\
\hline
Alma & 1 & DB & 80 \\
Alma & 1 & PL & 94 \\
Ahuva & 2 & DB & 80 \\
\hline
\end{array} \]

Q2: If \(R\) has 1000 tuples, how many tuples can \(\sigma_{\text{course}=\text{DB}}(R)\) have?

Variants of Selection

• Various variants of RA may allow different languages for specifying selection predicates
 – e.g., \(c^2 + a^2 + b^2\); name starts with 'A', etc.
• Common to all predicate formalisms: a predicate applies to a single tuple
 – Cannot state cross-tuple conditions, e.g.,
 • “there is another tuple with the same name”
 • “contains at least 100 tuples”

Definition of Selection

• Selection is a unary operator of the form \(\sigma_c\), where \(c\) is a logical condition (selection predicate) on attributes
 – \(c\) consists of comparisons and logical connectors (\(\land, \lor, \neg\))
 • item1 = item2
 • price \(\geq\) 500 \(\land\) price \(\leq\) budget
• Legal input: A relation \(R\) with all the attributes mentioned in the selection predicate
• The condition is applied to each tuple in the input, and each violating tuple is filtered out
• Formally, \(\sigma_c(R)\) is the relation \(S\) with the header of \(R\) and the tuple set \(\{t | t \in R \text{ and } t \vDash c\}\)

Q2: If \(R\) has 1000 tuples, how many tuples can \(\sigma_c(R)\) have?
Renaming by Example

\[R = \{(\text{Alma}, 1, \text{DB}, 80), (\text{Alma}, 1, \text{PL}, 94), (\text{Ahuva}, 2, \text{DB}, 72)\} \]

\[\rho_{\text{year/level}}(R) = \]

\[\{(\text{Alma}, 1, \text{DB}, 80), (\text{Alma}, 1, \text{PL}, 94), (\text{Ahuva}, 2, \text{DB}, 72)\} \]

Definition of Renaming

- Renaming is a unary operator of the form \(\rho_{A/B} \)
- Legal Input: A relation with a header that contains A and does not contain B
- Renaming changes only the header: attribute A becomes B
- Formally, \(\rho_{A/B}(R) \) is the relation S with
 - The header of R having A replaced by B
 - The tuple set of R

Q3: If R has 1000 tuples, how many tuples can \(\rho_{A/B}(R) \) have?

Union and Difference by Example

\[R = \{(\text{Alma}, 1, \text{DB}, 80), (\text{Alma}, 1, \text{PL}, 94), (\text{Ahuva}, 2, \text{DB}, 72)\} \]

\[S = \{(\text{Amir}, 3)\} \]

\[R \cup S = \{(\text{Alma}, 1, \text{DB}, 80), (\text{Alma}, 1, \text{PL}, 94), (\text{Ahuva}, 2, \text{DB}, 72), (\text{Amir}, 3)\} \]

\[R \setminus S = \{(\text{Alma}, 1, \text{DB}, 80), (\text{Alma}, 1, \text{PL}, 94), (\text{Ahuva}, 2, \text{DB}, 72)\} \]

Definition of Union and Difference

- Binary operators, interpreted as operations over the tuple sets
- Legal Input: a pair of relations R and S with the exact same header
 - We then say that R and S are union compatible
- Formally:
 - \(R \cup S \) is the relation with the header of R (and S) and the union of the tuple sets
 - \(R \setminus S \) is the relation with the header of R (and S) and the difference between the tuple sets

Q4: If each of R and S have 1000 tuples, how many tuples can be in \(R \cup S \)? \(R \setminus S \)?

Cartesian Product by Example

\[R = \{(\text{861}, \text{Alma}, 2), (\text{753}, \text{Amir}, 1), (\text{955}, \text{Ahuva}, 2)\} \]

\[S = \{(\text{23}, \text{PL}), (\text{45}, \text{DB}), (\text{76}, \text{OS})\} \]

\[R \times S = \]

\[\{(\text{861}, \text{Alma}, 2, 23, \text{PL}), (\text{861}, \text{Alma}, 2, 45, \text{DB}), (\text{861}, \text{Alma}, 2, 76, \text{OS}), (\text{753}, \text{Amir}, 1, 23, \text{PL}), (\text{753}, \text{Amir}, 1, 45, \text{DB}), (\text{753}, \text{Amir}, 1, 76, \text{OS}), (\text{955}, \text{Ahuva}, 2, 23, \text{PL}), (\text{955}, \text{Ahuva}, 2, 45, \text{DB}), (\text{955}, \text{Ahuva}, 2, 76, \text{OS})\} \]

Definition of Cartesian Product

- Binary operator, similar to set product, but each output pair is combined into a single tuple
- Legal Input: A pair of relations with disjoint sets of attributes
 - So how to cross-product Mom(ssn) with Dad(ssn)?
- Formally, let R and S have the headers \((A_1, \ldots, A_n)\) and \((B_1, \ldots, B_m)\), respectively; then \(R \times S\) is the relation T with:
 - Header \((A_1, \ldots, A_n, B_1, \ldots, B_m)\)
 - Tuple set \(\{r \circ s \mid r \in R \text{ and } s \in S\} \)

Q5: If each of R and S has 1000 tuples, how many tuples can be in \(R \times S \)?
For Cartesian product of named relations (e.g., R, S), we actually allow common attributes, and implicitly assume their renaming to same attribute.

\[R = \begin{array}{ccc}
\text{sid} & \text{name} & \text{year} \\
861 & \text{Alma} & 2 \\
753 & \text{Amir} & 1 \\
955 & \text{Ahuva} & 2 \\
\end{array} \quad S = \begin{array}{ccc}
\text{sid} & \text{cid} \\
861 & 23 \\
753 & 45 \\
\end{array} \]

\[R \times S = \begin{array}{ccc}
\text{R.sid} & \text{name} & \text{year} & \text{S.sid} & \text{cid} \\
861 & 2 & \text{Alma} & 23 \\
753 & 1 & \text{Amir} & 45 \\
955 & 2 & \text{Ahuva} & 45 \\
\end{array} \]

We have defined 3 unary operators and 3 binary operators. It is acceptable to omit the parentheses from \(\sigma \) when \(\sigma \) is unary. Then, unary operators take precedence over binary ones.

Example:

\[
\sigma_{\text{topic} = \text{DB}}(\text{Course}) \times \sigma_{\text{cid} = \text{cid1}}(\text{Studies})
\]

becomes

\[
\sigma_{\text{topic} = \text{DB}}(\text{Course}) \times \sigma_{\text{cid} = \text{cid1}}(\text{Studies})
\]

\(\sigma_{\text{topic} = \text{DB}}(\text{Course}) \times \sigma_{\text{cid} = \text{cid1}}(\text{Studies}) \)

Names of students who study DB:

\[
\pi_{\text{name} = \text{name}}(\text{Student} \times \pi_{\text{cid} = \text{cid1}}(\sigma_{\text{topic} = \text{DB}}(\text{Course} \times \rho_{\text{cid}/\text{cid}}(\text{Studies}))))
\]

\[
\pi_{\text{name} = \text{name}}(\text{Student} \times \pi_{\text{cid} = \text{cid1}}(\sigma_{\text{topic} = \text{DB}}(\text{Course} \times \rho_{\text{cid}/\text{cid}}(\text{Studies}))))
\]
Outline

• Background
• The Primitive Operators
 ▶ Implied Operators
 • Joins
 • Division
 • Equivalence & Independence
• Taste of Query Optimization (enrichment)

Outline

• Background
• The Primitive Operators
 ▶ Implied Operators
 • Joins
 • Division
 • Equivalence & Independence
• Taste of Query Optimization (enrichment)

Implied Operators

• We now discuss relational operators that are:
 – Not among the 6 basic operators
 – Can be expressed in RA (implied)
 – Very common in practice
• Good to have!
 – Easier to write queries
 – Easier to understand/maintain queries
 – Easier for DBMS to apply specialized optimizations

Joins

• Cartesian product is rarely standalone without selection, and is commonly followed by projection
• The combination $\pi \sigma \times$ is referred to generally as "join"
• There are several common cases that apply specific selections and projections, which we introduce here

Conditional Join

• Binary operator $R \bowtie_c S$ where c is a condition over the header of $R \times S$
• Shorthand notation for:

 $$\sigma_c(R \times S)$$

• Example: $R \bowtie_{a=b \land c<d} S$
Theta Join and Equijoin

- **Theta join** is a special case of conditional join \bowtie_c where c has the form $A \theta B$ or $A \theta v$ where A and B are attributes, v a constant value, and θ a comparison operator.
 - Example: $R \bowtie_{c<d} S$

- **Equijoin** is the special case where c has the form $A = B$ where A and B belong to the left and right operands, respectively.
 - Example: $Course \bowtie name = course$ Studies

Natural Join \bowtie

- Cartesian product, equality on all common attributes, projection on unique attributes.
- Formally, $R \bowtie S$ is equivalent to:
 \[\pi_{A_1,...,A_m}(R \times S / A_1,..,A_m)\]
 where:
 - $A_1,...,A_m$ are the attributes common to R and S
 - $(B_1,...,B_r)$ is the header of R
 - $(C_1,...,C_l)$ is the header of S with $A_1,...,A_m$ removed

- Should we care about which new attribute names are used in the renaming?
 - No! They disappear anyway...

Semijoin

- Semijoin of R and S is the restriction of R to the tuples that can naturally join with S.
- Formally: $R \bowtie S$ is the operator equivalent to
 \[\pi_{A_1,...,A_m}(R \bowtie S)\]
 where $(A_1,...,A_m)$ is the header of R.
Intersection

- The usual binary set-theoretic operator \cap
- **Legal input:** a pair of relations that are union compatible (i.e., same header)
- Special case of natural join and semijoin
 - If R and S have the same header, then $R \gg S$ and $R \bowtie S$ are equal to $R \cap S$

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization (enrichment)

Studies

<table>
<thead>
<tr>
<th>sid</th>
<th>student</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>DB</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>DB</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>AI</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>PL</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>DB</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>AI</td>
</tr>
</tbody>
</table>

CourseType

<table>
<thead>
<tr>
<th>course</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>core</td>
</tr>
<tr>
<td>PL</td>
<td>core</td>
</tr>
<tr>
<td>AI</td>
<td>elective</td>
</tr>
<tr>
<td>DC</td>
<td>elective</td>
</tr>
</tbody>
</table>

Who took all core courses?

Division

- Consider relations $R(X,Y)$ and $S(Y)$
 - Here, X and Y are disjoint tuples of attributes
- $R \bowtie S$ is the relation $T(X)$ that contains all the Xs of R that occur in R with every Y in S

Formal Definition

- **Legal input:** (R,S) such that R has all the attributes of S
- $R \bowtie S$ is the relation T with:
 - The header of R, with all attributes of S removed; let it be X
 - Tuple set $\{t \in \pi_X R \mid (t,s) \in R \text{ for all } s \in S\}$
- Note: "$(t,s) \in R$" is an abuse of notation, since the attributes in X need not necessarily come before those of $Y"
Questions

<table>
<thead>
<tr>
<th>sid</th>
<th>student</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>DB</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>DB</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>AI</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>PL</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>AI</td>
</tr>
</tbody>
</table>

\[(RxS) \div S = ? \]
\[(RxS) \div R = ? \]

Q6: If \(R \) has 1000 tuples and \(S \) has 100 tuples, how many tuples can be in \(R \div S \)?

Q7: If \(R \) has 1000 tuples and \(S \) has 1001 tuples, how many tuples can be in \(R \div S \)?

Studies

<table>
<thead>
<tr>
<th>sid</th>
<th>student</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>DB</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>DB</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>AI</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>PL</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>AI</td>
</tr>
</tbody>
</table>

Who took all core courses?

\[\text{Studies} \div \pi_{\text{course}, \text{type}=\text{core}} \text{CourseType} \]

Examples of Inexpressible Queries

Some very useful queries **cannot** be expressed in RA!

- **Aggregates**: How many followers does Ahuva have? How many persons does one follow on average?
- **Transitive closure**: Is there a follower path from Anna to Amir? Is there a cycle?

(How can one prove inexpressiveness?? Later in the course...)

R+S in Primitive RA

\[R(X,Y) \]
\[S(Y) \]

\[\pi_x R \setminus \pi_x \left(\left(\pi_x R \times S \right) \setminus R \right) \]

Each \(X \) of \(R \) w/ each \(Y \) of \(S \)

\((X,Y) \) s.t. \(X \) in \(R \), \(Y \) in \(S \), but \((X,Y) \) not in \(R \)

\(X \) s in \(R \) where for some \(Y \) in \(S \), \((X,Y) \) is not in \(R \)

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization (enrichment)
RA Expressions (Queries)

- Let S be a relation schema
 - Recall: S is a finite set of named relation schemas
- An RA expression (RA query) over S is an expression in RA, applied to the relation names of S
- For example:
 - $\pi_{\text{sid}}(\sigma_{\text{sid} = \text{stud}}(\text{Student} \times \rho_{\text{sid}/\text{stud}}(\text{Studies})))$

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sid</td>
<td>cid</td>
<td></td>
</tr>
</tbody>
</table>

Query Result

- Let S be a database schema
- Let φ be an RA query over S
- Let I be a database over S
- The result of evaluating φ over I, denoted $\varphi(I)$, is the relation obtained by applying φ to the relations of I
 - That is, every relation name is replaced with the corresponding relation in I

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sid</td>
<td>cid</td>
<td></td>
</tr>
</tbody>
</table>

Equivalence of RA Expressions

- Let S be a database schema, and let φ and ψ be two RA queries over S
- We say that φ and ψ are equivalent, denoted $\varphi \equiv \psi$, if:
 - for every database I over S it holds that $\varphi(I) = \psi(I)$

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sid</td>
<td>cid</td>
<td></td>
</tr>
</tbody>
</table>

Who Cares?

- Query optimization: we wish to allow DBMS to replace a query with an equivalent one that is more efficient to evaluate
- Expressiveness: do different sets of operators “give the same” class of expressible questions?
- Examples on $R(A,B), S(A,B), T(A,B)$
 - $\sigma_{A \leftarrow \varphi}(R \bowtie S) \equiv \sigma_{A \leftarrow \varphi}(R) \bowtie \sigma_{A \leftarrow \varphi}(S)$ (selection push)
 - $\pi_{A}(R \cup S) \equiv \pi_{A}(R) \cup \pi_{A}(S)$
 - $(R \bowtie S) \bowtie T \equiv (T \bowtie S) \bowtie R$

Q8: Is it true that $\rho_{R \bowtie A} \pi_{R}(R \times S) \equiv \pi_{\text{R}}$?

Containment

- Let S be a database schema, and let φ and ψ be two RA queries over S
- We say that φ is contained in ψ, denoted $\varphi \subseteq \psi$, if for every instance I over S we have $\varphi(I) \subseteq \psi(I)$

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sid</td>
<td>cid</td>
<td></td>
</tr>
</tbody>
</table>

Q9: How does containment relate to equivalence?

Q10: How do we prove containment? equivalence?
6 Primitive Operators

1. Projection (π)
2. Selection (σ)
3. Renaming (ρ)
4. Union (\cup)
5. Difference (\setminus)
6. Cartesian Product (\times)

Is this a "good" set of primitives? Could we drop an operator "without losing anything"? Answer next:

Independence

- Let o be an RA operator, and let A be a set of RA operators.
- We say that o is independent of A if o cannot be expressed in A; that is, no expression in A is equivalent to o.

Independence among Primitives

\[\pi \sigma \rho \times \cup \setminus \]

THEOREM: Each of the six primitives is independent of the other five.

Proof:
- Separate argument for each of the six
- Arguments follow a common pattern (next slide)
- We will do one operator here (union)
Recipe for Proving Independence

• Proving that operator o is independent:
 1. Fix a schema S and an instance I over S
 2. Find a property P over relations
 3. Prove that for every expression φ over S that does not use o, the relation $\varphi(I)$ satisfies P
 • Such proofs are typically by induction on the size of the expression, since operators compose
 4. Find an expression ψ such that ψ uses o and $\psi(I)$ violates P

We prove independence of the other operators in class

Independence of Union

1. Fix a schema S and an instance I over S
 $- S = R(A), S(A) \land I = \{R(0), S(1)\}$
2. Find a property P over relations
 $- \#tuples < 2$
3. Prove that for every expression φ that does not use o, the relation $\varphi(I)$ satisfies P
 $- \text{Induction base: } R$ and S have $\#tuples < 2$
 $- \text{Inductive: if } \varphi_1(I)$ and $\varphi_2(I)$ have $\#tuples < 2$, then so do
 $\sigma_c(\varphi_1(I)), \pi_c(\varphi_1(I)), \rho_{A\rightarrow B}(\varphi_1(I)), \varphi_1(I) \times \varphi_2(I), \varphi_1(I) \setminus \varphi_2(I)$
4. Find an expression ψ such that ψ uses o and $\psi(I)$ violates P
 $- \psi = R \cup S$

Outline

• Background
• The Primitive Operators
• Implied Operators
 • Joins
 • Division
• Equivalence & Independence
 ▶ Taste of Query Optimization (enrichment)

Rules of Thumb for Optimization

• Main computational challenges in RA:
 $- $ Large intermediate results
 $- $ Join is expensive
• Make intermediate results as small as possible before joining (while preserving equivalence)
 $- $ Apply selection and projection as early as possible ("push select/projection")
 $- $ Reorder joins to minimize intermediate relations
• Some optimization decisions are "always beneficial" (e.g., push selection) while others require knowledge on the data (e.g., join order)

Task: find Israelis who like albums with dog pictures

Which of the equivalent expressions is more efficient to apply?

$\pi_{\text{ssn}}(\pi_{\text{country}}=\text{Israel} (\text{Likes} \bowtie (\text{Person} \bowtie \text{Picture})))$

$\pi_{\text{ssn}}(\pi_{\text{topic}}=\text{dog} (\text{Likes} \bowtie (\text{Person} \bowtie \text{Picture})))$

$\pi_{\text{ssn}}((\text{Likes} \bowtie \sigma_{\text{country}=\text{Israel}}(\text{Person}) \bowtie \sigma_{\text{topic}=\text{dog}}(\text{Picture})))$

$\pi_{\text{ssn}}((\text{Likes} \bowtie \sigma_{\text{country}=\text{Israel}}(\text{Person}) \bowtie \sigma_{\text{album}=\text{dog}}(\text{Picture})))$

$\pi_{\text{ssn}}(\sigma_{\text{country}=\text{Israel}}(\text{Person}) \bowtie (\pi_{\text{album}}(\text{Likes} \bowtie \pi_{\text{album}}(\sigma_{\text{topic}=\text{dog}}(\text{Picture}))))$
Examples of Rewriting Operations

- Splitting conjunctions:
 \[\sigma_{c \land d}(R) \equiv \sigma_c(\sigma_d(R)) \equiv \sigma_d(\sigma_c(R)) \]
 - Applies to disjunction as well?
- Pushing through selection:
 \[\sigma_c(\sigma_d(R)) \equiv \sigma_d(\sigma_c(R)) \]
- Pushing through projection:
 \[\sigma_c(\pi_A(R)) \equiv \pi_A(\sigma_c(R)) \]
 - Assuming that \(c \) uses only attributes from \(A \)!

Pushing Projection

- Projection reduces the length of each row, and can substantially reduce the number of rows
 - Example: Person(ssn, country)
- Consider the query \(\pi_X(R_1 \bowtie R_2) \); denote:
 - \(Y = R_1 \cap R_2 \) (i.e. the attributes in both \(R_1 \) and \(R_2 \))
 - \(X_i = X \setminus R_1 \)
 - \(X_i = X \setminus R_2 \)
- (Abuse of notation – we mix attribute sequences with attributes sets)
- We would like to push projections into the join, that is:
 \[\pi_X(\pi_{X_1}(R_1 \bowtie R_2)) \]
 - Which \(Z_i \) and \(Z_c \) can work (equivalence preserved)?

Correct Projection Push

- \(\pi_X(R_1 \bowtie R_2) \equiv \pi_X(R_1) \bowtie \pi_X(R_2) \)?
- \(\pi_X(R_1, R_2) \equiv \pi_X(R_1) \bowtie \pi_X(R_2) \)?
- \(\pi_X(R_1 \bowtie R_2) \equiv \pi_X(\pi_Y(R_1) \bowtie \pi_Y(R_2)) \)?

When we push projection, we need to retain all the attributes that are used for (1) joining, and (2) operations outside the join.

Selection Push

- Can we rewrite \(\sigma_c(R_1 \bowtie R_2) \) as \((\sigma_c R_1 \bowtie \sigma_c R_2) \)?
- If all the attributes of \(C \) are in \(R_1 \), then \(\sigma_c(R_1 \bowtie R_2) \equiv \sigma_c(R_1 \bowtie R_2) \)
- If all the attributes of \(C \) are in \(R_2 \), then \(\sigma_c(R_1 \bowtie R_2) \equiv (R_1 \bowtie \sigma_c R_2) \)
- If all the attributes of \(C \) in both \(R_1 \) and \(R_2 \), then \(\sigma_c(R_1 \bowtie R_2) \equiv (\sigma_c R_1 \bowtie \sigma_c R_2) \)
- Pushing selection is generally beneficial; we may need some rewriting to get opportunities...

Pushing Down the Expression Tree

- Can we rewrite \(\sigma_c(R_1 \bowtie R_2) \) as \((\sigma_c R_1 \bowtie \sigma_c R_2) \)?
- If all the attributes of \(C \) are in \(R_1 \), then \(\sigma_c(R_1 \bowtie R_2) \equiv \sigma_c(R_1 \bowtie R_2) \)
- If all the attributes of \(C \) are in \(R_2 \), then \(\sigma_c(R_1 \bowtie R_2) \equiv (R_1 \bowtie \sigma_c R_2) \)
- If all the attributes of \(C \) in both \(R_1 \) and \(R_2 \), then \(\sigma_c(R_1 \bowtie R_2) \equiv (\sigma_c R_1 \bowtie \sigma_c R_2) \)
- Pushing selection is generally beneficial; we may need some rewriting to get opportunities...

Pushing Down the Expression Tree

- \(\sigma_{c \land d}(R_1 \bowtie R_2) \)
- \(\pi_X(R_1 \bowtie R_2) \)
- \(\pi_X(\pi_{X_1}(R_1 \bowtie R_2)) \)
- \(\pi_X(\pi_{X_1}(R_1) \bowtie \pi_{X_1}(R_2)) \)

Y = R_1 \cap R_2
X_i = X \setminus R_1
X_i = X \setminus R_2
Rewriting Joins

- Up to order of attributes, the natural join is commutative and associative
 - Commutative: $R \bowtie S \equiv S \bowtie R$
 - Associative: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
- Proof: straightforward
- So, given an RA query that involves only natural joins, apply the joins in whatever order you want (similarly to addition)
 - We may need to reorder attributes... nonissue

Example

\[
\begin{align*}
\pi_{\text{ssn}}(\pi_{\text{country}=\text{Israel}}(\text{Person} \bowtie (\text{Likes} \bowtie (\text{Picture})))) \\
\pi_{\text{ssn}}(\pi_{\text{country}=\text{Israel}}(\text{Person} \bowtie (\text{Likes} \bowtie (\text{Picture})))) \\
\pi_{\text{ssn}}(\pi_{\text{country}=\text{Israel}}(\text{Person} \bowtie \pi_{\text{album}}(\text{Likes} \bowtie (\pi_{\text{topic}=\text{dog}}(\text{Picture})))))) \\
\pi_{\text{ssn}}(\pi_{\text{country}=\text{Israel}}(\text{Person} \bowtie \pi_{\text{album}}(\text{Likes} \bowtie (\pi_{\text{topic}=\text{dog}}(\text{Picture})))))) \\
\end{align*}
\]

Perspective on Query-Plan Optimization

- Algorithms for RA query-plan optimization have been the subject of much research
- One of the first and common algorithms is the “Sellinger algorithm” from IBM Almaden
 - [Patricia G. Selinger, Morton M. Astrahan, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price: Access Path Selection in a Relational Database Management System. SIGMOD Conference 1979: 23-34]
 - Idea: dynamic programming; compute cost & size estimation for every possible subquery, using the costs of smaller subqueries
- General toolkit and concepts apply to many data/query models: algebra, equivalence, cost, plan optimization

Note on Alternative Approaches

- In a recent line of research, several alternative algorithms for RA computation are developed
- These algorithm do not construct intermediate results from sub-queries
 - Rather, simultaneously scan all input relations
- More reading:
 - Stanford’s Minesweeper [Ngo, Nguyen, Re, Rudra: Beyond worst-case analysis for joins with minesweeper. PODS 2014: 234-245]
- Not discussed in this course

Answers to Questions

- Q1: between 1 and 1000
- Q2: between 0 and 1000
- Q3: 1000
- Q4: between 1000 and 2000; 0 and 1000
- Q5: 1,000,000
- Q6: between 0 and 10
- Q7: 0
- Q8: No, since S can be empty
- Q9: Equivalence is containment in both directions
- Q10: Take a DB D and a tuple t in $Q_d(D)$, and prove that t is also in $Q_d(D)$
- Q11: Show a counterexample, consisting of a database D with the results $Q_d(D)$ and $Q_e(D)$