Lecture 6: Integrity Constraints
Database Constraints (Dependencies)

• Definition: properties that DB instances should satisfy beyond conforming to the schema structure

• There are various types of constraints, each with its designated
 – Language (how do rules look like?)
 – Semantics (what do rules mean?)

• In this lecture, we will learn constraint languages, discuss their semantics and discuss reasoning over them
Why is it important to model and understand constraints?

• Application coherence/safety
• Efficiency
• Inconsistency management
 ▪ Advanced course 236605
• Principles of schema design
 ▪ Next lecture
Use 1: Constraints for Application Coherence

• The “obvious” application of constraints is software safety: DBMS assures that, whatever app developers/users do, DB always satisfies specified constraints.

• Database constraints reduce (but typically not eliminate) responsibility of custom code to verify integrity.
Use 2: Constraints for Efficiency

- Knowing that constraints are satisfied can significantly help query planning.

\[
\begin{align*}
R(A, B) & \bowtie S(B, C) \bowtie T(C, D) \leq 1M \\
R(A, B) & \bowtie S(B, C) \bowtie T(C, D) \leq 1000 \\
\end{align*}
\]

- In addition, joins are commonly via keys; so designated structure/indices can be built.
Use 3: Constraints for Handling Inconsistency

• An *inconsistent database* contains inconsistent (or impossible) information
 – Two students have the same ID
 – A student gets credit for the same course twice
 – A student takes a non-existing course
 – A student gets a grade but missing an assignment

• Modeling: \((I, \Sigma)\) where \(I\) is a database instance and \(\Sigma\) is a set of *integrity constraints*; alas, \(I\) violates \(\Sigma\)

• (Slides from “Uncertainty in Databases,” Advanced Topics 236605)
Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Database D

Functional Dependency:

Every student gets a unique grade per course.

Integrity Constraints Σ

We can’t always enforce. Why?

```sql
SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 85 AND
  G.course = C.course AND
  C.lecturer = 'Eran'
```

Ahuva

Alon

?
Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Database D

Functional Dependency:
every student gets a unique grade per course

Integrity Constraints Σ

SELECT student FROM Grades G, Courses C WHERE G.grade >= 87 AND G.course = C.course AND C.lecturer = 'Eran'

- Ahuva
- Alon
Consistent Query Answering

Database D

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Functional Dependency:
every student gets a unique grade per course

Integrity Constraints Σ

```
SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 80 AND
    G.course = C.course AND
    C.lecturer='Eran'
```
• Interestingly, the motivation to inventing some popular types of constraints was to define what “good schemas” should avoid!
Example of Schema Design

Embassy

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Population repeated for every city! *Why is it bad?*
- Redundancy – we store more bits than needed
- We can get inconsistencies
- We may not be able to store some information (or be forced to used nulls)

Studies

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Alma</td>
<td>PL</td>
<td>2</td>
</tr>
<tr>
<td>Avia</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>PL</td>
<td>2</td>
</tr>
</tbody>
</table>
Normal Forms

Embassy

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

CountryCity

<table>
<thead>
<tr>
<th>country</th>
<th>city</th>
</tr>
</thead>
<tbody>
<tr>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>USA</td>
<td>NYC</td>
</tr>
<tr>
<td>UK</td>
<td>London</td>
</tr>
</tbody>
</table>

CityPopulation

<table>
<thead>
<tr>
<th>city</th>
<th>population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>NYC</td>
<td>8,400,000</td>
</tr>
<tr>
<td>London</td>
<td>8,500,000</td>
</tr>
</tbody>
</table>

In some “formal form”

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
</tr>
</tbody>
</table>
Another Bad Schema

<table>
<thead>
<tr>
<th>student</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Functional Dependencies (FDs)

• **Functional Dependency** is the most studied type of database constraint

• Most famous special case: **keys**
 – SQL distinguishes between two types of key constraints: primary key (≤ 1 allowed), and uniqueness (as many as you want)
 • A primary key cannot be NULL, and it typically has a more efficient index (determines tuple physical sorting)
Smartphone Store

Smartphone

<table>
<thead>
<tr>
<th>name</th>
<th>os</th>
<th>disk</th>
<th>price</th>
<th>vendor</th>
<th>headq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>32</td>
<td>550</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>64</td>
<td>700</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy Note 5</td>
<td>Android</td>
<td>32</td>
<td>630</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>16</td>
<td>595</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>128</td>
<td>700</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>32</td>
<td>635</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>128</td>
<td>900</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
</tbody>
</table>

The attribute set **name** determines the attribute **os**.

The attribute set **disk** determines the attribute **price**.

The attribute set **name** determines the attribute **vendor**.

The attribute set **vendor** determines the attribute **headq**.
US Locations

<table>
<thead>
<tr>
<th>name</th>
<th>state</th>
<th>city</th>
<th>street</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>White House</td>
<td>DC</td>
<td>Washington</td>
<td>1600 Pennsylvania Ave NW</td>
<td>20500</td>
</tr>
<tr>
<td>Wall Street</td>
<td>NY</td>
<td>New York</td>
<td>11 Wall St.</td>
<td>10005</td>
</tr>
<tr>
<td>Empire State B.</td>
<td>NY</td>
<td>New York</td>
<td>350 Fifth Avenue</td>
<td>10118</td>
</tr>
<tr>
<td>Hollywood Sign</td>
<td>CA</td>
<td>Los Angeles</td>
<td>4059 Mt Lee Dr.</td>
<td>90068</td>
</tr>
</tbody>
</table>

The attribute set \(\text{state} \) \(\text{city} \) \(\text{street} \) \(\text{zip} \) determines the attribute \(\text{zip} \) \(\text{street} \) \(\text{city} \) \(\text{state} \).
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Notation

• In the case of FDs, we consider *a single relation schema*

• We write an *attribute set* as a sequence of attribute names (not set notation {...})
 – name, os, disk, price

• An attribute set is denoted by a capital letter from the end of the Latin alphabet
 – X, Y, Z

• Concatenation stands for union
 – XY stands for XUY
 – XX = X
 – XY = YX = YYXX
From now on, we will assume the schema s without mentioning it explicitly.

A *Functional Dependency* (FD) is an expression $X \rightarrow Y$ where X and Y are sets of attributes.

- Examples:
 - $\text{name, disk} \rightarrow \text{price, os, vendor}$
 - $\text{name} \rightarrow \text{os, vendor}$
 - $\text{country, city, street} \rightarrow \text{zip}$
 - $\text{zip} \rightarrow \text{country}$
Semantics of an FD

• A relation R satisfies the FD $X \rightarrow Y$ if:
 for all tuples t and u in R, if t and u agree on X then they also agree on Y

• Mathematically:
 $$t[X] = u[X] \implies t[Y] = u[Y]$$

• A relation R satisfies a set F of FDs if R satisfies every FD in F
Trivial FDs

• An FD over is *trivial* if it holds in every relation (over the underlying schema)

PROPOSITION: An FD $X \rightarrow Y$ is trivial if and only if $Y \subseteq X$

– Proof:
 • The “if” direction is straightforward
 • For the “only if” direction, consider the instance I that contains two tuples that agree precisely on the attributes of X; if $Y \not\subseteq X$ then we get a violation of $X \rightarrow Y$
Can you express an FD stating that a column must contain a constant value (same across all tuples)?

<table>
<thead>
<tr>
<th>faculty</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>AI</td>
</tr>
<tr>
<td>CS</td>
<td>DB</td>
</tr>
<tr>
<td>CS</td>
<td>PL</td>
</tr>
<tr>
<td>CS</td>
<td>OS</td>
</tr>
</tbody>
</table>
Problem: No Unique Representation...

Faculty

<table>
<thead>
<tr>
<th>symbol</th>
<th>name</th>
<th>dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Computer Science</td>
<td>Irad Yavneh</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
<td>Ariel Orda</td>
</tr>
<tr>
<td>IE</td>
<td>Industrial Engineering</td>
<td>Avishai Mandelbaum</td>
</tr>
</tbody>
</table>

- $F_1 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{name}, \text{symbol}\}$
- $F_2 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{dean}, \text{dean} \rightarrow \text{symbol}\}$
- $F_3 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{symbol}, \text{symbol} \rightarrow \text{dean}\}$

They all mean precisely the same thing!
Entailed (Implied) FDs

• Let F be a set of FDs

• An FD $X \rightarrow Y$ is *entailed* (or *implied*) by F if for every relation R over the schema, if R satisfies F then R satisfies $X \rightarrow Y$

• Notation: $F \models X \rightarrow Y$
Examples of Entailment

• \(F = \{\text{name} \rightarrow \text{vendor}, \text{vendor} \rightarrow \text{headq}\} \)
 - \(F \models \text{name} \rightarrow \text{headq} \)
 - \(F \models \text{name, vendor} \rightarrow \text{headq} \)
 - \(F \models \text{name, vendor} \rightarrow \text{vendor} \)

• \(F = \{\text{A} \rightarrow \text{B}, \text{B} \rightarrow \text{C}, \text{C} \rightarrow \text{A}\} \)
 - \(F \models \text{A} \rightarrow \text{A} \)
 - \(F \models \text{A} \rightarrow \text{B} \)
 - \(F \models \text{A} \rightarrow \text{C} \)
 - \(F \models \text{A} \rightarrow \text{ABC} \)
Closure of an FD Set

• Let F be a set of FDs

• The *closure* of F, denoted F^+, is the set of all the FDs entailed by F

$$F^+ = \{X \rightarrow Y \mid F \models X \rightarrow Y\}$$

• Observations:

 – $F \subseteq F^+$

 – $(F^+)^+ = F^+$

 – F^+ contains every trivial FD
• Let F be a set of FDs, and let X be a set of attributes.

• The *closure* of X under F, denoted X^+, is the set of all the attributes A such that $X \rightarrow A$ is implied by F.

 – Note: notation assumes that F is known from the context.
• For all F, X, Y:

 - $X^+ = \{ A \mid F \models X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$

 - $X \subseteq X^+$

 - $(X^+)^+ = X^+$

 - If $X \subseteq Y$ then $X^+ \subseteq Y^+$
Minimal Cover

- Let F be a set of FDs
- A *minimal cover* (or *minimal basis*) for F is a set G of FDs with the following properties:
 - $G^+ = F^+$
 - FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$
 - All FDs are required: no FD $X \rightarrow A$ in G is such that $G \{X \rightarrow A\} \vdash X \rightarrow A$
 - All attributes are required: no FD $XB \rightarrow A$ in G is such that $G \vdash X \rightarrow A$
Example of Minimal Covers

\{A \rightarrow BC, B \rightarrow AC, C \rightarrow AB, AB \rightarrow C, AC \rightarrow B\}

• Minimal cover 1:
 \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}

• Minimal cover 2:
 \{C \rightarrow B, B \rightarrow A, A \rightarrow C\}

• Minimal cover 3:
 \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A\}

• Any more?

• In what sense is a minimal cover “minimal”?
• Assume s is our underlying relation schema

• A *superkey* is a set X of attributes such that X^+ contains every attribute in s

• A *key* is a superkey X that does not contain any other superkey
 – That is, if $Y \subseteq X$ then Y is not a superkey

• Later, we will see an efficient algorithm for finding a key
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Mechanically Proving FD Entailment

• Conceptually, to prove $F \models X \rightarrow Y$ we need to consider every possible relation that satisfies F, and check whether $X \rightarrow Y$ holds.

• But so far, for each such proof we have found a finite argument.

• Can we detect entailment algorithmically?

• Yes! Using a proof system
 – Later, we will see an efficient (not just computable) proof procedure.
A proof system is a collection of rules/patterns of the form “if you know x then infer y”

A proof of a statement stmt is a sequence of rule applications (each adding new facts), starting with what is known and ending with stmt

A proof system is:
- **Sound** if every provable fact is correct
- **Complete** if every correct fact is provable
Proof System for FDs

• Think of proof systems for inferring FDs from a known set of FDs... ("if you know some FDs, then you can infer a new FD")
 – Can you give easy example of a sound (not necessarily complete) proof system?
 – Can you give an easy example of a complete (not necessarily sound) proof system?
Armstrong’s Axioms

Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$

Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
RR(C, T, H, R, S, G)

\[F = \{ C \rightarrow T, HR \rightarrow C, HT \rightarrow R, CS \rightarrow G, HS \rightarrow R \} \]

1. \(HS \rightarrow R \in F \)
2. \(HS \rightarrow HR \quad 1 \quad (A2) \)
3. \(HS \rightarrow C \quad 2 \quad HR \rightarrow C, \quad (A3) \)
4. \(HS \rightarrow T \quad 3, \quad C \rightarrow T, \quad (A3) \)
5. \(HS \rightarrow CS \quad 3, \quad (A2) \)
6. \(HS \rightarrow G \quad 5, \quad CS \rightarrow G, \quad (A3) \)

Conclusion: \(F \models HS \rightarrow G \)

And, HS is a key
Armstrong’s Axioms

<table>
<thead>
<tr>
<th>Axiom</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reflexivity</td>
<td>If $Y \subseteq X$ then $X \rightarrow Y$</td>
</tr>
<tr>
<td>Augmentation</td>
<td>If $X \rightarrow Y$ then $XZ \rightarrow YZ$</td>
</tr>
<tr>
<td>Transitivity</td>
<td>If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$</td>
</tr>
</tbody>
</table>

- **Union:** If $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
 - $XZ \rightarrow YZ$ (augmentation)
 - $X \rightarrow X$ (reflexivity)
 - $XX \rightarrow XZ$ (augmentation); same as $X \rightarrow XZ$
 - $X \rightarrow YZ$ (transitivity)

- **Decomposition:** If $X \rightarrow YZ$ then $X \rightarrow Y$
Entailment vs. Provable

• Recall: $F \models X \rightarrow Y$ denotes that $X \rightarrow Y$ is entailed from F

• By $F \vdash X \rightarrow Y$ we denote that $X \rightarrow Y$ is provable from F using Armstrong's axioms

• Example: $F=\{A \rightarrow B, BC \rightarrow D\}$
 – Clearly, $F \models AC \rightarrow D$ is true
 – But is $F \vdash AC \rightarrow D$ true?
 • If so, a proof is required
THEOREM: Armstrong’s axioms form a sound and complete proof system for FDs

- That is, every provable FD is correct, and every correct FD is provable
- That is, for all \(F, X, Y \) we have
 \[
 F \models X \rightarrow Y \iff F \vdash X \rightarrow Y
 \]
- Hence, Armstrong’s axioms fully capture the implication dependencies among FDs
• We need to prove two things:
 1. Soundness
 2.Completeness

• Proving soundness is straightforward: the axioms are correct, so derived facts are correct, ...so end conclusions are correct
• Proving completeness is more involved
Proof of Completeness (1)

• We assume that $F \models X \rightarrow Y$
• We need to prove that $F \vdash X \rightarrow Y$

• Proof:
 – Denote by X^\vdash the set $\{A \mid F \vdash X \rightarrow A\}$
 – We will show that $Y \subseteq X^\vdash$
 – Then $X \rightarrow Y$ is proved by repeatedly using union
 • Recall – we showed that union is provable
 – ... and we are done
Proof of Completeness (2)

- We assume that $F \models X \rightarrow Y$
- We need to prove that $Y \subseteq X^\vdash = \{ A \mid F \vdash X \rightarrow A \}$
- Suppose, by way of contradiction, that $Y \not\subseteq X^\vdash$
- Assuming $Y \not\subseteq X^\vdash$, we construct a relation R such that:
 - R violates $X \rightarrow Y$ (Claim 1, Claim 2)
 - $R \models F$ (Claim 3)
 - This contradicts $F \models X \rightarrow Y$
- Conclusion $Y \subseteq X^\vdash$
Construction:
- Let X^c be the set of attributes that are not in X^+
- Observe that $Y \cap X^c \neq \emptyset$
- Construct a relation R with two tuples t and u:
 - $t[X^+] = u[X^+] = (0, \ldots, 0)$
 - $t[X^c] = (1, \ldots, 1)$
 - $u[X^c] = (2, \ldots, 2)$
Proof of Completeness (4)

- **Claim 1**: $X \subseteq X^\dagger$

 - Proof: apply reflexivity to each $A \in X$
• **Claim 2:** \(R \) violates \(X \rightarrow Y \)

 – Proof:

 • \(t \) and \(u \) agree on \(X \), due to **Claim 1**

 • \(t \) and \(u \) disagree on \(Y \), since \(Y \cap X^c \neq \emptyset \)
Claim 3: R satisfies F

- **Proof:**

 - Let $Z \rightarrow W$ be an FD in F; we need to prove that R satisfies $Z \rightarrow W$

 - If $Z \not\subseteq X^\vdash$ then u and t disagree on Z, and we are done; so suppose that $Z \subseteq X^\vdash$

 - Then $F \vdash X \rightarrow Z$ (union), hence $F \vdash X \rightarrow W$ (transitivity), hence $F \vdash X \rightarrow A$ for every $A \in W$ (reflexivity and transitivity)

 - We conclude that $W \subseteq X^\vdash$

 - Hence, u and t agree on W, and R satisfies $Z \rightarrow W$
Some observations

• The *closure* of F, denoted F^+, is the set of all the FDs *entailed* by F

• The *closure* of F, denoted F^+, is the set of all the FDs *provable* from F

• For all F, X, Y:
 - $X^+ = \{ A \mid F \models X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$
 - $X^+ = \{ A \mid F \vdash X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$

• **Simple lemma:** $Y \subseteq X^+$ iff $F \vdash X \rightarrow Y$
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Computational Problems

Closure Computation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
</table>
| • A set F of FDs
• A set X of attributes | Compute X^+ |

Entailment Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
</table>
| • A set F of FDs
• An FD $X \rightarrow Y$ | Determine whether $F \models X \rightarrow Y$ |

Key Generation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set F of FDs</td>
<td>Find a key</td>
</tr>
</tbody>
</table>

Equivalence Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sets F and G of FDs</td>
<td>Determine whether $F^+ = G^+$</td>
</tr>
</tbody>
</table>

Recall: we always assume an underlying relation schema!
Computing the Closure of an Attribute Set

Closure(X, F) {
 $V := X$
 while (V changes) {
 for all ($Y \rightarrow Z$ in F) {
 if ($Y \subseteq V$) $V := V \cup Z$
 }
 }
 return V
}

Example:
$F = \{AB \rightarrow C, A \rightarrow B, BC \rightarrow D, CE \rightarrow F\}$
$X = \{A\}$

<table>
<thead>
<tr>
<th>$Y \rightarrow Z$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>${A}$</td>
</tr>
<tr>
<td>$AB \rightarrow C$</td>
<td>${A}$</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>$BC \rightarrow D$</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>$CE \rightarrow F$</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>$AB \rightarrow C$</td>
<td>${A, B, C}$</td>
</tr>
<tr>
<td>$BC \rightarrow D$</td>
<td>${A, B, C, D}$</td>
</tr>
<tr>
<td>$CE \rightarrow F$</td>
<td>${A, B, C, D}$</td>
</tr>
</tbody>
</table>

$\{A, B, C, D\}$
What is \(\{DE\}_F^+ \)

\[F=\{ A \rightarrow B , \quad EBD \rightarrow CE , \]
\[IA \rightarrow D , \quad BE \rightarrow I , \quad D \rightarrow E , \quad E \rightarrow GA \} \]

What is \(\{ DE \}_F^+ \)
The proof of correctness is very similar to the proof of soundness & completeness of Armstrong’s axioms (omitted).

Running time:
- Suppose that \(R \) contains \(n \) attributes
- Let \(m \) be the total # of attribute occurrences in \(F \)
- With reasonable data structures, \(O(nm) \) time
- Can be improved to run in time \(O(|X|+m) \)
 - [Beeri & Bernstein, 1979]
Implication Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• A set F of FDs</td>
<td>Determine whether $F \models X \rightarrow Y$</td>
</tr>
<tr>
<td>• An FD $X \rightarrow Y$</td>
<td></td>
</tr>
</tbody>
</table>

```plaintext
IsImplied(X,Y,F) {
  if ($Y \subseteq \text{Closure}(X,F)$) return true
  else return false
}
// used simple lemma
```
Equivalence Testing

Given: \(\text{Sets } F \text{ and } G \text{ of FDs} \)

Goal: \(\text{Determine whether } F^+ = G^+ \)

\[\text{IsEquiv}(F,G) \{ \]
\[\quad \text{for all } X \rightarrow Y \text{ in } F \]
\[\quad \quad \text{if } (\neg \text{IsImplied}(X,Y,G)) \quad \text{return false} \]
\[\quad \text{for all } X \rightarrow Y \text{ in } G \]
\[\quad \quad \text{if } (\neg \text{IsImplied}(X,Y,F)) \quad \text{return false} \]
\[\quad \text{return true} \]
\[\} \]
Key Generation

Given:

- A set F of FDs

Goal:

Find a key

FindKey(F, R(A₁,...,Aₙ)) {
 K = {A₁,...,Aₙ}
 for (i=1,...,n) {
 if (Aᵢ ∈ Closure(K\{Aᵢ}, F))
 K := K\{Aᵢ}
 }
 return K
}

Example:

R(A,B,C)
F={B→A, AB→C}

<table>
<thead>
<tr>
<th>K</th>
<th>Aᵢ</th>
<th>K\Aᵢ</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B,C</td>
<td>A</td>
<td>B,C</td>
</tr>
<tr>
<td>B,C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B,C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

{B}
Proof of Correctness (1)

- **Claim 1**: Throughout the execution, \(K \) is always a superkey
 - Proof: Induction on iteration
 - Induction hypothesis: at start of iteration \(i \),
 - \(K^+ = \{A_1, \ldots, A_n\} \)
 - Basis (\(i=1 \)): Initial \(K \) contains all attributes
 - Inductive step: If \(A_i \in (K \setminus \{A_i\})^+ \) then
 \[
 K \subseteq (K \setminus \{A_i\})^+
 \]
 and then
 \[
 \{A_1, \ldots, A_n\} = K^+ \subseteq ((K \setminus \{A_i\})^+)^+ = (K \setminus \{A_i\})^+
 \]
 This is \(K \) for the next iteration as \(K := K \setminus \{A_i\} \)
• Let Q be the returned K

• **Claim 2:** Q is minimal

 – Proof: by way of contradiction

 • Suppose that $Q' \not\subseteq Q$ is a superkey, and let $A_i \in Q \setminus Q'$

 • Then $Q \setminus \{A_i\}$ is a superkey (why?)

 • Consider the i’th iteration handling A_i: we have $Q \subseteq K$ (since we only delete things from K), and so, $Q \setminus \{A_i\} \subseteq K \setminus \{A_i\}$

 • But then, $Q \setminus \{A_i\}$ is a superkey, and so $K \setminus \{A_i\}$ is a superkey, and in particular $A_i \in (K \setminus \{A_i\})^+$

 • So A_i should have been removed!
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Additional Types of Constraints

• So far we have been looking at functional dependencies, and the special cases of superkeys and keys

• Next, we consider two additional types:
 – Multivalued Dependency (MVD)
 – Inclusion Dependency (IND)
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Example of Multivalued Dependency

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

Why is this table “badly” designed?

Are there any FDs?

student \rightarrow faculty
student \rightarrow phone
student \rightarrow course
Multivalued Dependency

- Let s be a relation schema.
- A multivalued dependency (MVD) has the form $X\rightarrow\rightarrow Y$ where X and Y are disjoint sets of attributes.
- A relation R satisfies $X\rightarrow\rightarrow Y$ if
 - Informally: for every two tuples that agree on X, swapping their Y component doesn’t change R.
 - For every tuples t_1 and t_2 with $t_1[X]=t_2[X]$ there exists a tuple t_3 with
 - $t_3[X]=t_1[X]=t_2[X]$
 - $t_3[s\setminus(XY)]=t_1[s\setminus(XY)]$
 - $t_3[Y]=t_2[Y]$

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
</tr>
</tbody>
</table>
Any Other MVDs?

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

student → phone student→ course
Some Properties (Exercise / Assignment)

• Every FD is an MVD
• If $X \rightarrow Y$ then $X \rightarrow s \setminus (XY)$
• An MVD $X \rightarrow Y$ is trivial (always holds) if and only if $Y = \emptyset$ or $Y = s \setminus X$
• If X, Y, Z are pairwise disjoint, then $X \rightarrow Y$ and $Y \rightarrow Z$ imply $X \rightarrow Z$
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Example of Inclusion Dependencies

Student

<table>
<thead>
<tr>
<th>name</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
</tr>
</tbody>
</table>

Posting

<table>
<thead>
<tr>
<th>id</th>
<th>owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Alma</td>
</tr>
<tr>
<td>45</td>
<td>Amir</td>
</tr>
<tr>
<td>76</td>
<td>Ahuva</td>
</tr>
<tr>
<td>79</td>
<td>Ahuva</td>
</tr>
</tbody>
</table>

Likes

<table>
<thead>
<tr>
<th>student</th>
<th>posting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>45</td>
</tr>
<tr>
<td>Alma</td>
<td>76</td>
</tr>
<tr>
<td>Ahuva</td>
<td>23</td>
</tr>
<tr>
<td>Amir</td>
<td>76</td>
</tr>
</tbody>
</table>

Constraints:

- \(\text{Likes}[ext{student}] \subseteq \text{Student}[ext{name}] \)
- \(\text{Likes}[ext{posting}] \subseteq \text{Posting}[ext{id}] \)
- \(\text{Posting}[ext{owner}] \subseteq \text{Student}[ext{name}] \)

Grad

<table>
<thead>
<tr>
<th>name</th>
<th>faculty</th>
<th>advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>Anna</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
<td>Anna</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>Ahmed</td>
</tr>
</tbody>
</table>

StudentGrant

<table>
<thead>
<tr>
<th>prof</th>
<th>student</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>Amir</td>
<td>1000</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Ahuva</td>
<td>1500</td>
</tr>
</tbody>
</table>

Constraint:

- \(\text{StudentGrant}[ext{prof},\text{student}] \subseteq \text{Grad}[ext{advisor},\text{name}] \)

Note: A prof. receives a grant for a student only if she advises that student.
• Let S be a relational schema
 – Recall: S consists of several relation schemas

• An *Inclusion Dependency* (IND) has the following form $R[A_1,...,A_m] \subseteq S[B_1,...,B_m]$
 where:
 – R and S are relation names in S
 – $A_1,...,A_m$ are distinct attributes of R
 – $B_1,...,B_m$ are distinct attributes of S

• Semantics: $\pi_{A_1,...,A_m}(R) \subseteq \pi_{B_1,...,B_m}(S)$
Examples

• What is the meaning of the following IND?
 \[\text{Grad}[\text{name}] \subseteq \text{StudentGrant}[\text{student}] \]

• What does the following mean about the binary relation \(R(A,B) \):
 \[R[A,B] \subseteq R[B,A] \]
Sounds and Complete System for INDs

- Like FDs, INDs have a simple sound and complete proof system (proof not covered):

 - **Reflexivity**: $R[X] \subseteq R[X]$

 - **Projection**: If $R[A_1,...,A_m] \subseteq S[B_1,...,B_m]$ then for every sequence $i_1,...,i_k$ of distinct indices in $\{1,...,m\}$ we have $R[A_{i_1},...,A_{i_k}] \subseteq S[B_{i_1},...,B_{i_k}]$

 - **Transitivity**: If $R[X] \subseteq S[Y]$ and $S[Y] \subseteq T[Z]$ then $R[X] \subseteq T[Z]$
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Anti-Monotonic Constraints

• Let S be a database schema

• Recall: $I \subseteq J$ if for every relation name, the corresponding relation in I is a subset of the corresponding relation in J

• A constraint C (over S) is **monotonic** if for all instances I and J where $I \subseteq J$, if I satisfies C then J satisfies C

• A constraint C is **anti-monotonic** if for all instances I and J where $I \subseteq J$, if J satisfies C then I satisfies C
Which is Monotonic? Anti-Monotonic?

- An FD
- An MVD
- An IND