Database Management Systems

Course 236363

Tutorial 7:
Schema Normalization, Functional Dependencies
Outline

• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions
Schema Design

Customer:

<table>
<thead>
<tr>
<th>Cust_Id</th>
<th>Faculty</th>
<th>Track</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>CS</td>
<td>Software</td>
</tr>
<tr>
<td>45678</td>
<td>EE</td>
<td>Hardware</td>
</tr>
<tr>
<td>11111</td>
<td>IE</td>
<td>IS</td>
</tr>
<tr>
<td>22222</td>
<td>IE</td>
<td>Accounting</td>
</tr>
</tbody>
</table>

Ordered:

<table>
<thead>
<tr>
<th>Cust_Id</th>
<th>Book_Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>Database Systems</td>
</tr>
<tr>
<td>45678</td>
<td>Anatomy</td>
</tr>
<tr>
<td>12345</td>
<td>Database And Knowledge</td>
</tr>
<tr>
<td>11111</td>
<td>Anatomy</td>
</tr>
<tr>
<td>22222</td>
<td>Intro. to Economy</td>
</tr>
</tbody>
</table>

CustOrders:

<table>
<thead>
<tr>
<th>Cust_Id</th>
<th>Faculty</th>
<th>Track</th>
<th>Book_Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12345</td>
<td>CS</td>
<td>Software</td>
<td>Database Systems</td>
</tr>
<tr>
<td>45678</td>
<td>EE</td>
<td>Hardware</td>
<td>Anatomy</td>
</tr>
<tr>
<td>12345</td>
<td>CS</td>
<td>Software</td>
<td>Database And Knowledge</td>
</tr>
<tr>
<td>11111</td>
<td>IE</td>
<td>IS</td>
<td>Anatomy</td>
</tr>
<tr>
<td>22222</td>
<td>IE</td>
<td>Accounting</td>
<td>Intro. To Economy</td>
</tr>
</tbody>
</table>

Which design is better?
Schema Design — cont’d

• Disadvantages of one table:
 – Redundant storage
 • Harder to update
 • Consistency issues
 – How should one represent a customer that has not ordered any book?
Schema design – cont’d

• Good design:
 – No duplications of data
 – Enables simple updates
 – Simple
 – Not too many tables

• We saw a way to design DB’s
 – ERD – has its limitations…

• This lesson we will focus on an alternative way
 – Functional dependencies (FD’s)
Outline

• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions
Notations

- Attributes - A,B,C,..
- Sets of attributes – X,Y,…
- We will often replace
 - {A} with A
 - {A,B} with AB
- Relational Schemas – R,S,T,…
 - R(A,B,C) or R={A,B,C} or R[A,B,C]
- The content of the relations – r, s, t
 - r={(1,2,3), (2,1,4)}
- Set of functional dependencies – F
 - A single functional dependency - f
Functional Dependencies - definitions

• Let
 – \(R = \{A_1, ..., A_n\} \) be a relational schema, let
 – \(r \) be a relation over \(R \) and let
 – \(X, Y \subseteq R \) be sets of attributes

• \(r \) is said to satisfy the functional dependency \(X \rightarrow Y \) if
 – every two tuples that have the same value in \(X \) have the same values in \(Y \)
 – We denote this by \(r \models X \rightarrow Y \)
Functional Dependencies – definitions

• Let
 – R be a relational schema and let
 – r be a relation over R and let
 – F be a set of FD’s over R

• r satisfies F (r ⊨ F) if
 – for every f in F, r satisfies f (r ⊨ f)

• f is entailed from F (F ⊨ f) if
 – for every relation r over R it holds that if r ⊨ F
 then r ⊨ f
Outline

• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions
Armstrong’s Axioms

• Three axioms for proving existence of dependencies. Given $X, Y, Z \subseteq R$:
 – Reflexivity: if $X \subseteq Y$ then $Y \rightarrow X$
 – Inclusion: if $X \rightarrow Y$ then $XZ \rightarrow YZ$
 – Transitivity: if $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$

• Other modus ponens:
 – Union: if $X \rightarrow Y$ and $X \rightarrow Z$ then $X \rightarrow YZ$
 – Decomposition: if $X \rightarrow Y$ and $Z \subseteq Y$ then $X \rightarrow Z$
 – Semi-transitivity: if $X \rightarrow Y$ and $WY \rightarrow Z$ then $WX \rightarrow Z$
Armstrong’s Axioms

• Let F be a set of functional dependencies and let f be a FD.
 – f is provable from F (F ⊢ f) if f can be deduced from F by Armstrong’s axioms.
 – That is, we can formally prove f from F
Armstrong’s Axioms - example

- \(F = \{ \text{Cust}_\text{Id} \rightarrow \text{Track}, \text{Track} \rightarrow \text{Faculty} \} \)
- We show that
 \[F \vdash \text{Cust}_\text{Id} \rightarrow \{ \text{Track}, \text{Faculty} \} \]

1. \(\text{Track} \rightarrow \text{Faculty} \) \(\in F \)
2. \(\text{Track} \rightarrow \{ \text{Track}, \text{Faculty} \} \) \(\text{Inclusion, 1} \)
3. \(\text{Cust}_\text{Id} \rightarrow \text{Track} \) \(\in F \)
4. \(\text{Cust}_\text{Id} \rightarrow \{ \text{Track}, \text{Faculty} \} \) \(2,3,\text{Trans.} \)
• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions
Closure of FD’s

• Let F be a set of FD’s
 – The closure of F (F⁺) is the set
 \[\{X \rightarrow Y \mid F \models X \rightarrow Y\} \]

• Example: F={A \rightarrow B, B \rightarrow C}, the following FD’s are in F⁺:
 – A \rightarrow C, AB \rightarrow C, AC \rightarrow C, B \rightarrow B, A \rightarrow B, \emptyset \rightarrow \emptyset, C \rightarrow \emptyset
 – Note that F⁺ contains also other FD’s

• Note that the set F⁺ is exponential and therefore we will try to avoid computing it.
Closure of a property

• Let
 – X be a set of properties and let
 – F be a set of FD’s

• The closure of X with respect to F \((X^+_F)\) is the set \(\{A \mid F \not\models X \rightarrow A\}\)
 – Note that A is a single attribute
• A set of FD’s might have “redundant” information, for instance the sets
 – $F = \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
 – $G = \{A \rightarrow B, B \rightarrow C\}$

 are equivalent in the sense that $F^+=G^+$
 – The dependency $A \rightarrow C$ is redundant

• Our goal: A unified form for FD’s
Minimal set of FD’s

• Let F be a set of FD’s, F is minimal if for every FD $X \rightarrow Y \in F$ the following hold:
 – $|Y| = 1$
 – $F^+ \text{ does not equal } (F \setminus \{X \rightarrow Y\})^+$
 – For all $Z \subseteq X$ the following hold:
 • $F^+ \text{ does not equal } [(F \setminus \{X \rightarrow Y\}) \cup \{Z \rightarrow Y\}]^+$
 • i.e., F does not contain an FD $X \rightarrow A$ such that X includes redundant attributes
Minimal Cover

• Let F and G be sets of FD’s
 – G is a cover for F (and vice versa) if $F^+ = G^+$
 – In this case we can use F instead of G

• A set of FD’s F_C is a minimal cover of F if
 – It is a cover for F
 – It is minimal

• Note that there might be more than one minimal cover
Algorithm for finding a minimal cover

• Let F be a set of FD’s we define
 – $G \leftarrow \{(X \rightarrow A) \mid \exists Y ((X \rightarrow Y) \in F \land A \in Y)\}$;

Repeat:

1. For each $f = X \rightarrow A \in G$ do:
 – if $A \in X^{+}_{G \setminus \{f\}}$ then $G \leftarrow G \setminus \{f\}$;

2. For each $f = X \rightarrow A \in G$ and $B \in X$ do
 – if $A \in (X \setminus \{B\})^{+}_{G}$ then
 $G \leftarrow (G \setminus \{X \rightarrow A\}) \cup \{X \setminus B \rightarrow A\}$;

Until no more changes to G
Finding a minimal cover - example

• Let
 – \(R=\{A,B,C,D\} \)
 – \(F=\{A \rightarrow B, BC \rightarrow A, ABC \rightarrow D, D \rightarrow A\} \)
• Find a minimal cover of \(F \)

• 1^st\ stage \(G \leftarrow F \)
• Step 1: no change
• Step 2: We omit the A from the FD \(ABC \rightarrow D \) (since \(D \in (\{A,B,C\}\backslash\{A\})^+_G \) and obtain
 – \(G=\{A \rightarrow B, BC \rightarrow A, BC \rightarrow D, D \rightarrow A\} \)
• Step 1: We omit the FD \(BC \rightarrow A \) (since \(A \in BC^+_G \backslash \{BC \rightarrow A\} \) and obtain
 – \(G=\{A \rightarrow B, BC \rightarrow D, D \rightarrow A\} \)
• There are no more changes and therefore \(G \) is the minimal cover of \(F \).
Outline

• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions
Let
- \(R \) be a relational schema and let
- \(X \subseteq R \) be a subset of attributes and let
- \(F \) be a set of FD’s

X is a superkey of R if and only if \(F \models X \rightarrow R \), or equivalently:
- \(X \) is a superkey of \(R \) iff \(X \rightarrow R \in F^+ \)
- \(X \) is a superkey of \(R \) iff \(X^+_F = R \)
Keys – cont’d

- Let $R=\{A,B,C,D\}$ and $F=\{A \rightarrow C, B \rightarrow D\}$
 - ABC is a superkey of R
 - However, it is not unique
 - And not minimal

- X is a key of R if
 - It is a superkey of R
 - There does not exist $Y \subset X$ such that Y is also a superkey
• Schema design
 – Introduction
 – Notation
• Functional dependencies
• Armstrong’s axioms
• Minimal cover
• Keys
• Questions
• Let U be a schema and let F be a non empty set of non trivial FDs over U.

• Assume that the FDs in F are of the form $X \rightarrow A$ where A is a single attribute.

• True/False
 – For every non-trivial FD $X \rightarrow A$ in F there exists a key K such that $A \in K$

• No!
• $U=\{A,B\}$
• $F=\{A \rightarrow B\}$
• The only key is A and B does not belong to the set $\{A\}$
• For every key K there exists a non trivial FD $X \rightarrow A$ in F such that $A \notin K$?

– This statement is true.

 • K does not equal U
 • Therefore, there exists $A \in U$ such that $A \notin K$
 • Since K is a key, it holds that $A \in K^+_F$
 • That is, there exists an attribute $A \in K^+_F$ such that
 – $A \notin K$
 – $X \rightarrow A \in F$
 • Therefore there exists $X \rightarrow A$ in F where $A \notin K$
The number of keys is at most the number of attributes in U?

- False.
- Let $U=\{A,B,C,D\}$ and let $F=\{AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB\}$
- Then AB, AC, AD, BC, BD, CD are keys
- But there are only 4 attributes
• Let
 – F_C be a minimal cover of F and let
 – L be the set of attributes that appear in the l.h.s of
 FD’s in F,
 – R be the set of attributes that appear in the r.h.s
 of FD’s in F
• If $R \cap L = \emptyset$ then there is a unique key?
 – True.
 – $U \setminus R$ is a superkey
 – If X does not contain $B \in U \setminus R$ then the closure
 does not contain B
 – Thus, $U \setminus R$ is a unique key