Lecture 6:
Integrity Constraints
• Definition: properties that DB instances should satisfy beyond conforming to the schema structure

• There are various types of constraints, each with its designated
 – Language (how do rules look like?)
 – Semantics (what do rules mean?)

• In this lecture, we will learn constraint languages, discuss their semantics and discuss reasoning over them
Why is it important to model and understand constraints?

• Application coherence/safety
• Efficiency
• Inconsistency management
 ▪ *Advanced course 236605*
• Principles of schema design
 ▪ *Next lecture*
Use 1: Constraints for Application Coherence

• The “obvious” application of constraints is **software safety**: DBMS assures that, whatever app developers/users do, DB always satisfies specified constraints.

• Database constraints reduce (but typically not eliminate) responsibility of custom code to verify integrity.
Use 2: Constraints for Efficiency

• Knowing that constraints are satisfied can significantly help query planning

\[R(A,B) \quad S(B,C) \quad T(C,D) \quad R(A,B) \quad S(B,C) \]

\[1000 \quad 1000 \quad 1000 \quad 1000 \quad 1000 \]

\[\leq 1M \quad \leq 1000 \]

• In addition, joins are commonly via keys; so designated structure/indices can be built
Use 3: Constraints for Handling Inconsistency

• An inconsistent database contains inconsistent (or impossible) information
 – Two students have the same ID
 – A student gets credit for the same course twice
 – A student takes a non-existing course
 – A student gets a grade but missing an assignment

• Modeling: \((I, \Sigma)\) where \(I\) is a database instance and \(\Sigma\) is a set of integrity constraints; alas, \(I\) violates \(\Sigma\)

• (Slides from “Uncertainty in Databases,” Advanced Topics 236605)
Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Database D

Functional Dependency: every student gets a unique grade per course

Integrity Constraints Σ

```
SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 85 AND G.course = C.course AND C.lecturer='Eran'
```

We can’t always enforce. Why?
Consistent Query Answering

Database D

<table>
<thead>
<tr>
<th>Grades</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>student</td>
<td>course</td>
</tr>
<tr>
<td>Ahuva</td>
<td>PL</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
</tr>
</tbody>
</table>

Functional Dependency:

Every student gets a unique grade per course

Integrity Constraints Σ

SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 87 AND
 G.course = C.course AND
 C.lecturer = 'Eran'

Ahuva

Alon
Consistent Query Answering

Database D

Functional Dependency:
every student gets a unique grade per course

Integrity Constraints Σ

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>DC</td>
<td>Keren</td>
</tr>
</tbody>
</table>

SELECT student
FROM Grades G, Courses C
WHERE G.grade >= 80 AND G.course = C.course AND C.lecturer='Eran'

Ahuva
Alon
Use 4: Constraints for Schema Design

• Interestingly, the motivation to inventing some popular types of constraints was to define what “good schemas” should avoid!
Example of Schema Design

Embassy

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Population repeated for every city! *Why is it bad?*

- Redundancy – we store more bits than needed
- We can get inconsistencies
- We may not be able to store some information (or be forced to use nulls)

Studies

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>credit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Alma</td>
<td>PL</td>
<td>2</td>
</tr>
<tr>
<td>Avia</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>DB</td>
<td>3</td>
</tr>
<tr>
<td>Amir</td>
<td>PL</td>
<td>2</td>
</tr>
</tbody>
</table>
Normal Forms

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>city</th>
<th>cityPopulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
</tbody>
</table>

Not in “normal form”

<table>
<thead>
<tr>
<th>country</th>
<th>city</th>
<th>population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Israel</td>
<td>Tel Aviv</td>
<td>400,000</td>
</tr>
<tr>
<td>France</td>
<td>Paris</td>
<td>2,200,000</td>
</tr>
<tr>
<td>USA</td>
<td>NYC</td>
<td>8,400,000</td>
</tr>
<tr>
<td>UK</td>
<td>London</td>
<td>8,500,000</td>
</tr>
</tbody>
</table>

In some “formal form”

In “formal form”?

<table>
<thead>
<tr>
<th>country</th>
<th>host</th>
<th>address</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
<td>Tel Aviv</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
<td>Paris</td>
</tr>
<tr>
<td>student</td>
<td>phone</td>
<td>course</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
</tr>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>AI</td>
</tr>
<tr>
<td>Ahuva</td>
<td>04-333-3333</td>
<td>AI</td>
</tr>
<tr>
<td>Ahuva</td>
<td>054-333-3333</td>
<td>AI</td>
</tr>
</tbody>
</table>
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
• *Functional Dependency* is the most studied type of database constraint

• Most famous special case: *keys*
 – SQL distinguishes between two types of key constraints: primary key (\(\leq 1\) allowed), and uniqueness (as many as you want)
 • A primary key cannot be NULL, and it typically has a more efficient index (determines tuple physical sorting)
Example: Smartphone Store

<table>
<thead>
<tr>
<th>name</th>
<th>os</th>
<th>disk</th>
<th>price</th>
<th>vendor</th>
<th>headq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>32</td>
<td>550</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>64</td>
<td>700</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy Note 5</td>
<td>Android</td>
<td>32</td>
<td>630</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>16</td>
<td>595</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>128</td>
<td>700</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>32</td>
<td>635</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>128</td>
<td>900</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
</tbody>
</table>

The attribute set determines the attribute:
- name
- disk
- vendor
- headq

os | price | vendor | headq

The attribute set determines the attribute:
- name
- os
- vendor
- headq

The attribute set determines the attribute:
- vendor
- headq
Example: US Addresses

USLocations

<table>
<thead>
<tr>
<th>name</th>
<th>state</th>
<th>city</th>
<th>street</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>White House</td>
<td>DC</td>
<td>Washington</td>
<td>1600 Pennsylvania Ave NW</td>
<td>20500</td>
</tr>
<tr>
<td>Wall Street</td>
<td>NY</td>
<td>New York</td>
<td>11 Wall St.</td>
<td>10005</td>
</tr>
<tr>
<td>Empire State B.</td>
<td>NY</td>
<td>New York</td>
<td>350 Fifth Avenue</td>
<td>10118</td>
</tr>
<tr>
<td>Hollywood Sign</td>
<td>CA</td>
<td>Los Angeles</td>
<td>4059 Mt Lee Dr.</td>
<td>90068</td>
</tr>
</tbody>
</table>

The attribute set **state** determines the attribute **zip**.

The attribute set **city** determines the attribute **street**.

The attribute set **zip** determines the attribute **state**.
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Notation

• In the case of FDs, we consider a single relation schema

• We write an attribute set as a sequence of attribute names (not set notation {…})
 – name, os, disk, price

• An attribute set is denoted by a capital letter from the end of the Latin alphabet
 – X, Y, Z

• Concatenation stands for union
 – XY stands for XUY
 – XX = X
 – XY = YX = YYXX
Functional Dependency

• From now on, we will assume the schema s without mentioning it explicitly.

• A **Functional Dependency (FD)** is an expression $X \rightarrow Y$ where X and Y are sets of attributes.

 – Examples:
 • name, disk \rightarrow price, os, vendor
 • name \rightarrow os, vendor
 • country, city, street \rightarrow zip
 • zip \rightarrow country
Semantics of an FD

• A relation R satisfies the FD $X \rightarrow Y$ if:
 for all tuples t and u in R, if t and u agree on X then they also agree on Y

• Mathematically:
 \[t[X] = u[X] \implies t[Y] = u[Y] \]

• A relation R satisfies a set F of FDs if R satisfies every FD in F
Trivial FDs

• An FD over is *trivial* if it holds in every relation (over the underlying schema)

• **PROPOSITION:** An FD $X \rightarrow Y$ is trivial if and only if $Y \subseteq X$

 – Proof:
 • The “if” direction is straightforward
 • For the “only if” direction, consider the instance I that contains two tuples that agree precisely on the attributes of X; if $Y \not\subseteq X$ then we get a violation of $X \rightarrow Y$
Can you express an FD stating that a column must contain a constant value (same across all tuples)?

<table>
<thead>
<tr>
<th>faculty</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>AI</td>
</tr>
<tr>
<td>CS</td>
<td>DB</td>
</tr>
<tr>
<td>CS</td>
<td>PL</td>
</tr>
<tr>
<td>CS</td>
<td>OS</td>
</tr>
</tbody>
</table>
Problem: No Unique Representation...

<table>
<thead>
<tr>
<th>symbol</th>
<th>name</th>
<th>dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Computer Science</td>
<td>Irad Yavneh</td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
<td>Ariel Orda</td>
</tr>
<tr>
<td>IE</td>
<td>Industrial Engineering</td>
<td>Avishai Mandelbaum</td>
</tr>
</tbody>
</table>

- $F_1 = \{\text{symbol} \rightarrow \text{name}, \text{dean} \text{, } \text{name} \rightarrow \text{symbol}, \text{dean} \text{, } \text{dean} \rightarrow \text{name}, \text{symbol}\}$
- $F_2 = \{\text{symbol} \rightarrow \text{name} \text{, } \text{name} \rightarrow \text{dean} \text{, } \text{dean} \rightarrow \text{symbol}\}$
- $F_3 = \{\text{symbol} \rightarrow \text{name} \text{, } \text{name} \rightarrow \text{symbol} \text{, } \text{dean} \rightarrow \text{symbol} \text{, } \text{symbol} \rightarrow \text{dean}\}$

They all mean precisely the same thing!
Entailed (Implied) FDs

• Let F be a set of FDs

• An FD $X \rightarrow Y$ is *entailed* (or *implied*) by F if for every relation R over the schema, if R satisfies F then R satisfies $X \rightarrow Y$

• Notation: $F \models X \rightarrow Y$
Examples of Entailment

• $F = \{\text{name} \rightarrow \text{vendor}, \text{vendor} \rightarrow \text{headq}\}$
 – $F \models \text{name} \rightarrow \text{headq}$
 – $F \models \text{name}, \text{vendor} \rightarrow \text{headq}$
 – $F \models \text{name}, \text{vendor} \rightarrow \text{vendor}$

• $F = \{\text{A} \rightarrow \text{B}, \text{B} \rightarrow \text{C}, \text{C} \rightarrow \text{A}\}$
 – $F \models \text{A} \rightarrow \text{A}$
 – $F \models \text{A} \rightarrow \text{B}$
 – $F \models \text{A} \rightarrow \text{C}$
 – $F \models \text{A} \rightarrow \text{ABC}$
Closure of an FD Set

• Let F be a set of FDs
• The *closure* of F, denoted F^+, is the set of all the FDs entailed by F
• $F^+ = \{X \rightarrow Y \mid F \models X \rightarrow Y\}$
• Observations:
 - $F \subseteq F^+$
 - $(F^+)^+ = F^+$
 - F^+ contains every trivial FD
Closure of an Attribute Set

• Let F be a set of FDs, and let X be a set of attributes.

• The closure of X under F, denoted X^+, is the set of all the attributes A such that $X \rightarrow A$ is implied by F.

 – Note: notation assumes that F is known from the context.
Observations

• For all F, X, Y:
 - $X^+ = \{ A \mid F \models X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$
 - $X \subseteq X^+$
 - $(X^+)^+ = X^+$
 - If $X \subseteq Y$ then $X^+ \subseteq Y^+$
Let F be a set of FDs

A *minimal cover* (or *minimal basis*) for F is a set G of FDs with the following properties:

- $G^+ = F^+$
- FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$
- All FDs are required: no FD $X \rightarrow A$ in G is such that $G \setminus \{X \rightarrow A\} \not\models X \rightarrow A$
- All attributes are required: no FD $XB \rightarrow A$ in G is such that $G \models X \rightarrow A$
Example of Minimal Covers

\{A \rightarrow BC, B \rightarrow AC, C \rightarrow AB, AB \rightarrow C, AC \rightarrow B\}

- Minimal cover 1:
 \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}

- Minimal cover 2:
 \{C \rightarrow B, B \rightarrow A, A \rightarrow C\}

- Minimal cover 3:
 \{A \rightarrow B, B \rightarrow A, A \rightarrow C, C \rightarrow A\}

- Any more?

- In what sense is a minimal cover “minimal”?
• Assume s is our underlying relation schema

• A **superkey** is a set X of attributes such that X^+ contains every attribute in s

• A **key** is a superkey X that does not contain any other superkey
 – That is, if $Y \subseteq X$ then Y is not a superkey

• Later, we will see an efficient algorithm for finding a key
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Mechanically Proving FD Entailment

- Conceptually, to prove $F \models X \rightarrow Y$ we need to consider every possible relation that satisfies F, and check whether $X \rightarrow Y$ holds.
- But so far, for each such proof we have found a finite argument.
- *Can we detect entailment algorithmically?*
- Yes! Using a *proof system*
 - Later, we will see an efficient (not just computable) proof procedure.
Proof System

• A proof system is a collection of rules/patterns of the form “if you know x then infer y”

• A proof of a statement stmt is a sequence of rule applications (each adding new facts), starting with what is known and ending with stmt

• A proof system is:
 – Sound if every provable fact is correct
 – Complete if every correct fact is provable
Proof System for FDs

• Think of proof systems for inferring FDs from a known set of FDs... ("if you know some FDs, then you can infer a new FD")
 – Can you give easy example of a sound (not necessarily complete) proof system?
 – Can you give an easy example of a complete (not necessarily sound) proof system?
Armstrong’s Axioms

Reflexivity: If $Y \subseteq X$ then $X \rightarrow Y$

Augmentation: If $X \rightarrow Y$ then $XZ \rightarrow YZ$

Transitivity: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
RR(C, T, H, R, S, G)

\[F=\{ C \rightarrow T, HR \rightarrow C, HT \rightarrow R, CS \rightarrow G, HS \rightarrow R \} \]

1. \(HS \rightarrow R \in F \)
2. \(HS \rightarrow HR \ (1) \ (A2) \)
3. \(HS \rightarrow C \ (2)HR \rightarrow C, \ (A3) \)
4. \(HS \rightarrow T \ (3), \ C \rightarrow T, \ (A3) \)
5. \(HS \rightarrow CS \ (3), \ (A2) \)
6. \(HS \rightarrow G \ (5), \ CS \rightarrow G, \ (A3) \)

Conclusion: \(F \models HS \rightarrow G \)

And, HS is a key
Provable Rules

Armstrong’s Axioms

Reflexivity: If \(Y \subseteq X \) then \(X \rightarrow Y \)

Augmentation: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \)

Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

- **Union:** If \(X \rightarrow Y \) and \(X \rightarrow Z \) then \(X \rightarrow YZ \)
 - \(XZ \rightarrow YZ \) (augmentation)
 - \(X \rightarrow X \) (reflexivity)
 - \(XX \rightarrow XZ \) (augmentation); same as \(X \rightarrow XZ \)
 - \(X \rightarrow YZ \) (transitivity)

- **Decomposition:** If \(X \rightarrow YZ \) then \(X \rightarrow Y \)
Entailment vs. Provable

• Recall: \(F \models X \rightarrow Y \) denotes that \(X \rightarrow Y \) is entailed from \(F \)

• By \(F \vdash X \rightarrow Y \) we denote that \(X \rightarrow Y \) is provable from \(F \) using Armstrong's axioms

• Example: \(F=\{A \rightarrow B, \ BC \rightarrow D\} \)
 – Clearly, \(F \vdash AC \rightarrow D \) is true
 – But is \(F \vdash AC \rightarrow D \) true?
 • *If so, a proof is required*
Soundness and Completeness

Theorem: Armstrong’s axioms form a sound and complete proof system for FDs

- That is, every provable FD is correct, and every correct FD is provable
- That is, for all F, X, Y we have

 $$F \models X \rightarrow Y \iff F \vdash X \rightarrow Y$$
- Hence, Armstrong’s axioms fully capture the implication dependencies among FDs

<table>
<thead>
<tr>
<th>Reflexivity:</th>
<th>If $Y \subseteq X$ then $X \rightarrow Y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Augmentation:</td>
<td>If $X \rightarrow Y$ then $XZ \rightarrow YZ$</td>
</tr>
<tr>
<td>Transitivity:</td>
<td>If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$</td>
</tr>
</tbody>
</table>
• We need to prove two things:
 1. Soundness
 2. Completeness

• Proving soundness is straightforward: the axioms are correct, so derived facts are correct, ...so end conclusions are correct

• Proving completeness is more involved
• We assume that $F \models X \rightarrow Y$
• We need to prove that $F \vdash X \rightarrow Y$

• **Proof:**
 – Denote by X^\vdash the set $\{A \mid F \vdash X \rightarrow A\}$
 – We will show that $Y \subseteq X^\vdash$
 – Then $X \rightarrow Y$ is proved by repeatedly using \textit{union}
 • Recall – we showed that union is provable
 – ... and we are done
Proof of Completeness (2)

- We assume that $F \models X \rightarrow Y$
- We need to prove that $Y \subseteq X^\vdash = \{A \mid F \vdash X \rightarrow A\}$
- Suppose, by way of contradiction, that $Y \not\subseteq X^\vdash$
- Assuming $Y \not\subseteq X^\vdash$, we construct a relation R such that:
 - R violates $X \rightarrow Y$ (Claim 1, Claim 2)
 - $R \not\models F$ (Claim 3)
 - This contradicts $F \models X \rightarrow Y$
- Conclusion $Y \subseteq X^\vdash$
Proof of Completeness (3)

- **Construction:**
 - Let X^c be the set of attributes that are not in X^\dagger
 - Observe that $Y \cap X^c \neq \emptyset$
 - Construct a relation R with two tuples t and u:
 - $t[X^\dagger]=u[X^\dagger]=(0,...,0)$
 - $t[X^c]=(1,...,1)$
 - $u[X^c]=(2,...,2)$
• **Claim 1**: $X \subseteq X^\dagger$

 — Proof: apply reflexivity to each $A \in X$
• **Claim 2:** R violates $X \rightarrow Y$

 - Proof:

 • t and u agree on X, due to **Claim 1**
 • t and u disagree on Y, since $Y \cap X^c \neq \emptyset$

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>A_2</th>
<th>A_3</th>
<th>A_4</th>
<th>A_5</th>
<th>A_6</th>
<th>A_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Proof of Completeness (6)

Claim 3: R satisfies F

- **Proof:**

 - Let \(Z \rightarrow W \) be an FD in \(F \); we need to prove that \(R \) satisfies \(Z \rightarrow W \).

 - If \(Z \not\subseteq X^\rightarrow \) then \(u \) and \(t \) disagree on \(Z \), and we are done; so suppose that \(Z \subseteq X^\rightarrow \) so for each \(A \) in \(Z \), \(F \vdash X \rightarrow A \).

 - Then \(F \vdash X \rightarrow Z \) (union), hence \(F \vdash X \rightarrow W \) (transitivity), hence \(F \vdash X \rightarrow A \) for every \(A \in W \) (reflexivity and transitivity).

 - We conclude that \(W \subseteq X^\rightarrow \).

 - Hence, \(u \) and \(t \) agree on \(W \), and \(R \) satisfies \(Z \rightarrow W \).
Some observations

- The **closure** of F, denoted F^+, is the set of all the FDs entailed by F
- The **closure** of F, denoted F^+, is the set of all the FDs provable from F
- For all F, X, Y:
 - $X^+ = \{ A \mid F \models X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$
 - $X^+ = \{ A \mid F \vdash X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^+ \}$
- **Simple lemma:** $Y \subseteq X^+$ iff $F \vdash X \rightarrow Y$
Outline

• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Computational Problems

Closure Computation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Compute X^+</td>
</tr>
<tr>
<td>A set X of attributes</td>
<td></td>
</tr>
</tbody>
</table>

Entailment Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Determine whether $F \models X \rightarrow Y$</td>
</tr>
<tr>
<td>An FD $X \rightarrow Y$</td>
<td></td>
</tr>
</tbody>
</table>

Key Generation

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A set F of FDs</td>
<td>Find a key</td>
</tr>
</tbody>
</table>

Equivalence Testing

<table>
<thead>
<tr>
<th>Given:</th>
<th>Goal:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sets F and G of FDs</td>
<td>Determine whether $F^+ = G^+$</td>
</tr>
</tbody>
</table>

Recall: we always assume an underlying relation schema!
Computing the Closure of an Attribute Set

Closure(X,F) {
 $V := X$
 while (V changes) {
 for all ($Y \rightarrow Z$ in F) {
 if ($Y \subseteq V$)
 $V := V \cup Z$
 }
 }
 return V
}

Example:
$F = \{AB \rightarrow C, A \rightarrow B, BC \rightarrow D, CE \rightarrow F\}$
$X = \{A\}$

<table>
<thead>
<tr>
<th>$Y \rightarrow Z$</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>${A}$</td>
</tr>
<tr>
<td>$AB \rightarrow C$</td>
<td>${A}$</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>$BC \rightarrow D$</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>$CE \rightarrow F$</td>
<td>${A, B}$</td>
</tr>
<tr>
<td>$AB \rightarrow C$</td>
<td>${A, B, C}$</td>
</tr>
<tr>
<td>$BC \rightarrow D$</td>
<td>${A, B, C, D}$</td>
</tr>
<tr>
<td>$CE \rightarrow F$</td>
<td>${A, B, C, D}$</td>
</tr>
</tbody>
</table>

$\{A, B, C, D\}$
What is \(\{DE\}^+_F \)

\[
F = \{ A \rightarrow B, \quad EBD \rightarrow CE, \\
IA \rightarrow D, \quad BE \rightarrow I, \quad D \rightarrow E, \quad E \rightarrow GA \}
\]

What is \(\{DE\}^+_F \)
Correctness and Running Time

• The proof of correctness is very similar to the proof of soundness & completeness of Armstrong’s axioms (omitted)

• Running time:
 – Suppose that R contains n attributes
 – Let m be the total # of attribute occurrences in F
 – With reasonable data structures, \(O(nm)\) time
 – Can be improved to run in time \(O(|X|+m)\)
 • [Beeri & Bernstein, 1979]
Implication Testing

Given:
- A set F of FDs
- An FD $X \rightarrow Y$

Goal:
Determine whether $F \models X \rightarrow Y$

```
IslImplied(X,Y,F) {
    if (Y $\subseteq$ Closure(X,F)) return true
    else return false
}
```
// used simple lemma
Equivalent Testing

Given:

- Sets F and G of FDs

Goal:

Determine whether $F^+ = G^+$

```plaintext
IsEquiv(F,G) {
    for all X→Y in F
        if (!IsImplied(X,Y,G)) return false
    for all X↛Y in G
        if (!IsImplied(X,Y,F)) return false
    return true
}
```
Key Generation

Given:
- A set \(F \) of FDs

Goal:
- Find a key

\[
\text{FindKey}(F, R(A_1, \ldots, A_n)) \{ \\
\quad K = \{A_1, \ldots, A_n\} \\
\quad \text{for } (i=1,\ldots,n) \{ \\
\quad\quad \text{if } (A_i \in \text{Closure}(K\backslash\{A_i\}, F)) \\
\quad\quad\quad K := K\backslash\{A_i\} \\
\quad\} \\
\quad \text{return } K \\
\}\]

Example:
- \(R(A,B,C) \)
- \(F=\{B \rightarrow A, AB \rightarrow C\} \)

<table>
<thead>
<tr>
<th>K</th>
<th>A_i</th>
<th>K\backslash A_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B,C</td>
<td>A</td>
<td>B,C</td>
</tr>
<tr>
<td>B,C</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B,C</td>
<td>C</td>
<td>B</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\{B\}
CLAIM 1: Throughout the execution, K is always a superkey

- Proof: Induction on iteration #

 - Induction hypothesis: at start of iteration i,
 - $K^+ = \{A_1, \ldots, A_n\}$

 - Basis (i=1): Initial K contains all attributes

 - Inductive step: If $A_i \in (K\{A_i\})^+$ then

 \[K \subseteq (K\{A_i\})^+ \]

 and then

 \[\{A_1, \ldots, A_n\} = K^+ \subseteq ((K\{A_i\})^+)^+ = (K\{A_i\})^+ \]

 This is K for the next iteration i+1 as $K := K\{A_i\}$
Proof of Correctness (2)

• Let Q be the returned K

• **Claim 2**: Q is minimal

 – Proof: by way of contradiction

 • Suppose that $Q' \subsetneq Q$ is a superkey, and let $A_i \in Q \setminus Q'$

 • Then $Q \setminus \{A_i\}$ is a superkey (why?)

 • Consider the i’th iteration handling A_i: we have $Q \subseteq K$ (since we only delete things from K), and so, $Q \setminus \{A_i\} \subseteq K \setminus \{A_i\}$

 • But then, $Q \setminus \{A_i\}$ is a superkey, and so $K \setminus \{A_i\}$ is a superkey, and in particular $A_i \in (K \setminus \{A_i\})^+$

 • So A_i should have been removed!
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Additional Types of Constraints

• So far we have been looking at functional dependencies, and the special cases of superkeys and keys

• Next, we consider two additional types:
 – Multivalued Dependency (MVD)
 – Inclusion Dependency (IND)
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Example of Multivalued Dependency

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

Why is this table “badly” designed?

Are there any FDs?

- **student→faculty**
- **student→phone**
- **student→course, lecturer**
Multivalued Dependency

• Let s be a relation schema
• A multivalued dependency (MVD) has the form $X \rightarrow Y$ where X and Y are disjoint sets of attributes
• A relation R satisfies $X \rightarrow Y$ if
 – Informally: for every two tuples that agree on X, swapping their Y component doesn’t change R
 – For every tuples t_1 and t_2 with $t_1[X] = t_2[X]$ there exists a tuple t_3 with
 • $t_3[X] = t_1[X] = t_2[X]$
 • $t_3[s\backslash(XY)] = t_1[s\backslash(XY)]$
 • $t_3[Y] = t_2[Y]$

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS 04-111-1111</td>
</tr>
<tr>
<td>Alma</td>
<td>CS 052-111-1111</td>
</tr>
<tr>
<td>Alma</td>
<td>CS 052-111-1111</td>
</tr>
</tbody>
</table>
Any Other MVDs?

<table>
<thead>
<tr>
<th>student</th>
<th>faculty</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-3333</td>
<td>AI</td>
<td>Shaul</td>
</tr>
</tbody>
</table>
Some Properties (Exercise / Assignment)

• Every FD is an MVD
• If $X \rightarrow Y$ then $X \rightarrow s \setminus (XY)$
• An MVD $X \rightarrow Y$ is *trivial* (always holds) if and only if $Y = \emptyset$ or $Y = s \setminus X$
• If X, Y, Z are pairwise disjoint, then $X \rightarrow Y$ and $Y \rightarrow Z$ imply $X \rightarrow Z$
Outline

• Introduction

• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms

• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies

• Anti-Monotonicity
Example of Inclusion Dependencies

Student

<table>
<thead>
<tr>
<th>name</th>
<th>Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
</tr>
</tbody>
</table>

Posting

<table>
<thead>
<tr>
<th>id</th>
<th>owner</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Alma</td>
</tr>
<tr>
<td>45</td>
<td>Amir</td>
</tr>
<tr>
<td>76</td>
<td>Ahuva</td>
</tr>
<tr>
<td>79</td>
<td>Ahuva</td>
</tr>
</tbody>
</table>

Likes

<table>
<thead>
<tr>
<th>student</th>
<th>posting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>45</td>
</tr>
<tr>
<td>Alma</td>
<td>76</td>
</tr>
<tr>
<td>Ahuva</td>
<td>23</td>
</tr>
<tr>
<td>Amir</td>
<td>76</td>
</tr>
</tbody>
</table>

- $\text{Likes[student]} \subseteq \text{Student[name]}$
- $\text{Likes[posting]} \subseteq \text{Posting[id]}$
- $\text{Posting[owner]} \subseteq \text{Student[name]}$

Grad

<table>
<thead>
<tr>
<th>name</th>
<th>faculty</th>
<th>advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>Anna</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
<td>Anna</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>Ahmed</td>
</tr>
</tbody>
</table>

StudentGrant

<table>
<thead>
<tr>
<th>prof</th>
<th>student</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>Amir</td>
<td>1000</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Ahuva</td>
<td>1500</td>
</tr>
</tbody>
</table>

- $\text{StudentGrant[prof,student]} \subseteq \text{Grad[advisor, name]}$

A prof. receives a grant for a student only if she advises that student
Definition of an Inclusion Constraint

• Let S be a relational schema
 – Recall: S consists of several relation schemas

• An *Inclusion Dependency* (IND) has the following form $R[A_1,\ldots,A_m] \subseteq S[B_1,\ldots,B_m]$
 where:
 – R and S are relation names in S
 – A_1,\ldots,A_m are distinct attributes of R
 – B_1,\ldots,B_m are distinct attributes of S

• Semantics: $\pi_{A_1,\ldots,A_m}(R) \subseteq \pi_{B_1,\ldots,B_m}(S)$
Examples

• What is the meaning of the following IND?
 Grad[name] ⊆ StudentGrant[student]

• What does the following mean about the binary relation R(A,B):
 \[R[A,B] \subseteq R[B,A] \]
Sounds and Complete System for INDs

• Like FDs, INDs have a simple sound and complete proof system (proof not covered):

 – **Reflexivity**: $R[X] \subseteq R[X]$

 – **Projection**: If $R[A_1, \ldots, A_m] \subseteq S[B_1, \ldots, B_m]$ then for every sequence i_1, \ldots, i_k of distinct indices in $\{1, \ldots, m\}$ we have $R[A_{i_1}, \ldots, A_{i_k}] \subseteq S[B_{i_1}, \ldots, B_{i_k}]$

 – **Transitivity**: If $R[X] \subseteq S[Y]$ and $S[Y] \subseteq T[Z]$ then $R[X] \subseteq T[Z]$
• Introduction
• Functional Dependencies
 ▪ Definitions
 ▪ Armstrong’s Axioms
 ▪ Algorithms
• Other Types of Constraints
 ▪ Multivalued Dependencies
 ▪ Inclusion Dependencies
• Anti-Monotonicity
Anti-Monotonic Constraints

- Let S be a database schema
- Recall: $I \subseteq J$ if for every relation name, the corresponding relation in I is a subset of the corresponding relation in J
- A constraint C (over S) is *monotonic* if for all instances I and J where $I \subseteq J$, if I satisfies C then J satisfies C
- A constraint C is *anti-monotonic* if for all instances I and J where $I \subseteq J$, if J satisfies C then I satisfies $C
Which is Monotonic? Anti-Monotonic?

- An FD
- An MVD
- An IND