Database Management Systems
Course 236363

Lecture 3:
Relational Algebra

Outline

× Background
× The Primitive Operators
× Implied Operators
 ▪ Joins
 ▪ Division
× Equivalence & Independence
× Taste of Query Optimization

The Relational Model

× A conceptual model for representing data, integrity constraints, and queries
 — All based on the notion of a schema
× DBMS is responsible for translating specifications into the physical environment at hand
 — Storage in files, caches, indexes
 — Queries translated to query plans (high-level imperative programs)
 — Query plans translated to low-level execution over stored data
Querying: Which Courses Avia Took?

<table>
<thead>
<tr>
<th>S</th>
<th>C</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID</td>
<td>name</td>
<td>number</td>
</tr>
<tr>
<td>1234</td>
<td>Avia</td>
<td>363</td>
</tr>
<tr>
<td>2345</td>
<td>Boris</td>
<td>319</td>
</tr>
</tbody>
</table>

Assembly

```
mov $1, %rax
mov $1, %rdi
mov $message, %rsi
mov $13, %rdx
syscall
```

Python

```python
for s in S:
    for c in C:
        for t in T:
            if s.sName == 'Avia' and s.ID == t.sID and t.cNum == c.number:
                print(c.name)
```

```
SELECT C.name
FROM   S,C,T
WHERE  S.name = 'Avia' AND S.ID = T.sID AND T.cNum = C.number
```

SQL

QL

```
QL{⟨x⟩ | ∃y,n,z,l,g [S(y,n,'Avia') ∧ C(z,x,l) ∧ T(y,z,g)]}
```

Logic Programming (Datalog)

```
Logic(RC)
QL{⟨x⟩ | ∃y,n,z,l,g [S(y,n,'Avia') ∧ C(z,x,l) ∧ T(y,z,g)]}
```

Logic (RC)

```
QL{⟨x⟩ | ∃y,n,z,l,g [S(y,n,'Avia') ∧ C(z,x,l) ∧ T(y,z,g)]}
```

The Relational Algebra (RA)

- Mathematical query language
- Introduced by Edgar Codd
- Since invention, developed and studied by Codd and many others

RA Example

Names of students who study DB:

\[
\pi_{\text{name}}(\pi_{\text{sid}}(\text{Student} \times \pi_{\text{sid}}(\pi_{\text{chun}}(\pi_{\text{topic}}(\text{Course} \times \pi_{\text{sid}}(\text{Studies})))))
\]

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>year</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Why RA?

• Understanding the relational algebra is a key understanding central concepts in databases: SQL, query evaluation, query optimization
• Tool for building theoretical foundations of various query languages (e.g., SQL)
• Tool for developing novel data/query models

RA vs Other QLs

• Some subtle (yet important) differences between RA and other languages
 – Can tables have duplicate records?
 • (RA vs. SQL)
 – Are missing (NULL) values allowed?
 • (RA vs. SQL)
 – Is there any order among records?
 • (RA vs. SQL)
 – Is the answer dependent on the domain from which values are taken (not just the DB)?
 • (RA vs. RC)

Relation Schema

• A relation schema is a finite sequence of distinct attribute names att with a mapping of each to a domain dom of legal values
• Notation: $(\text{att}_1: \text{dom}_1, \ldots, \text{att}_k: \text{dom}_k)$
 – Example: $(\text{sid}: \text{int}, \text{name}: \text{string}, \text{year}: \text{int})$
Tuples

- Let s be a relation schema $(att_1:dom_1, \ldots, att_k:dom_k)$
- A tuple (over s) is a sequence (v_1, \ldots, v_k) of values v_i where each v_i is in dom_i.
 - That is, a tuple is an element of $dom_1 \times \ldots \times dom_k$.

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
</tbody>
</table>

Relations

- A relation R is a pair (s, r)
 - s is a relation schema
 - Called the header of R
 - r is a finite set of tuples over s

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

Ignoring Domains

- In this lecture we ignore the attribute domains, since they play no special role.
 - (Well, almost; they make a difference for query equivalence, but we do not get there...)
- For example, we will write $(sid, name, year)$ instead of $(sid:int, name:string, year:int)$
Notation

• Notation 1:
 – Let R be a relation with the header $(\text{att}_1,\ldots,\text{att}_k)$
 – Let $t=(v_1,\ldots,v_k)$ be a tuple of R
 – We refer to v_i by $t.\text{att}_i$

• Notation 2:
 – Let a_1,\ldots,a_m be attributes among $\text{att}_1,\ldots,\text{att}_k$
 – We denote by $t[a_1,\ldots,a_m]$ the tuple $(t.a_1,\ldots,t.a_m)$

$$
\begin{array}{ccc}
\text{sid} & \text{name} & \text{year} \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}
$$

$$
\begin{array}{ccc}
\text{sid} & \text{name} & \text{year} \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}
$$

Databases

• A database schema is finite set of relation names, each mapped into a relation schema
 – Example: $\text{Student}((\text{sid},\text{name},\text{year}))$, $\text{Course}((\text{cid},\text{topic}))$, $\text{Studies}((\text{sid},\text{cid}))$

• A database (or instance) over a schema consists of a relation for each relation schema

<table>
<thead>
<tr>
<th>Student</th>
<th>Course</th>
<th>Studies</th>
</tr>
</thead>
</table>
| \begin{array}{ccc}
\text{sid} & \text{name} & \text{year} \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array} | \begin{array}{ccc}
\text{cid} & \text{topic} & \text{sid} \\
23 & PL & 861 \\
45 & DB & 861 \\
76 & OS & 753 \\
\end{array} | \begin{array}{ccc}
\text{sid} & \text{cid} \\
861 & 23 \\
861 & 45 \\
753 & 45 \\
955 & 76 \\
\end{array} |

What is “Algebra”?

• An abstract algebra consists of:
 – A class of elements
 – A collection of operators

• Each operator:
 – Has an arity d
 – Has a domain of sequences (e_1,\ldots,e_d) of elements
 – Maps every sequence in its domain to an element e

• The definition of an operator allows for composition:
 \[
o_1(o_2(o_1(x),o_1(y,o_1(z,x))))
 \]

• Examples:
 – Ring of integers: $(\mathbb{Z},+)$
 – Boolean algebra: $(\{\text{true, false}\},\wedge,\vee,\neg)$
 – Relational algebra
The Relational Algebra

- In the relational algebra (RA) the elements are relations
 - Recall: a relation is a pair (s,r)
- RA has 6 primitive operators:
 - Unary: projection, selection, renaming
 - Binary: union, difference, Cartesian product
- Each of the six is essential (independent)—we cannot define it using the others
 - We will see what exactly this means and how this can be proved
- We commonly allow many more useful operators that can be defined by the primitive ones
 - For example, intersection via union and difference

Outline

- Background
- The Primitive Operators
 - Implied Operators
 - Joins
 - Division
 - Equivalence & Independence
 - Taste of Query Optimization

6 Primitive (Basic) Operators

1. Projection (π)
2. Selection (σ)
3. Renaming (ρ)
4. Union (∪)
5. Difference (∖)
6. Cartesian Product (×)
Task
(end of this section)

Phrase a query that finds the names of students who get private lessons
(i.e., the student takes a course that no one else takes)

Projection by Example

\[R = \]

\[\pi_{\text{sid}, \text{name}}(R) = \]

\[\pi_{\text{year}}(R) = \]

Definition of Projection

- Projection is a unary operator of the form \(\pi_{A_1, \ldots, A_k} \)
 where each \(A_i \) is an attribute name
 - A projection is parameterized by attributes, so we actually have infinitely many different projection operators
- Legal input: relation \(R \) in with attributes \(A_1, \ldots, A_k \) (and possibly others)
- \(\pi_{A_2, \ldots, A_k}(R) \) is the relation \(S \) with:
 - Header \((A_2, \ldots, A_k) \)
 - Tuple set \(\{(A_2, \ldots, A_k) \mid t \in R\} \)

Q: If \(R \) has 1000 tuples, how many tuples can \(\pi_{A_2, \ldots, A_k}(R) \) have?
Selection by Example

\[R = \begin{align*}
\text{student} & \quad \text{year} & \quad \text{course} & \quad \text{grade} \\
\text{Alma} & \quad 1 & \quad \text{DB} & \quad 80 \\
\text{Alma} & \quad 1 & \quad \text{PL} & \quad 94 \\
\text{Ahava} & \quad 2 & \quad \text{DB} & \quad 72
\end{align*} \]

\[\sigma_{\text{course} = \text{DB}}(R) = \begin{align*}
\text{student} & \quad \text{year} & \quad \text{course} & \quad \text{grade} \\
\text{Alma} & \quad 1 & \quad \text{DB} & \quad 80 \\
\text{Ahava} & \quad 2 & \quad \text{DB} & \quad 72
\end{align*} \]

\[\sigma_{\text{year} = 1 \land \text{grade} > 84}(R) = \begin{align*}
\text{student} & \quad \text{year} & \quad \text{course} & \quad \text{grade} \\
\text{Alma} & \quad 1 & \quad \text{PL} & \quad 94
\end{align*} \]

Definition of Selection

- Selection is a unary operator of the form \(\sigma_c \), where \(c \) is a logical condition (selection predicate) on attributes
 - \(c \) consists of comparisons and logical connectors (\(\land, \lor, \neg \))
 - \(\text{item}_1 = \text{item}_2 \)
 - \(\text{price} \geq 500 \land \text{price} \leq \text{budget} \)
 - **Legal input**: A relation with all the attributes mentioned in the selection predicate
 - The condition is applied to each tuple in the input, and each violating tuple is filtered out
 - Formally, \(\sigma_c(R) \) is the relation \(S \) with the header of \(R \) and the tuple set \(\{ t \mid t \in R \text{ and } t \vDash c \} \)

Q: If \(R \) has 1000 tuples, how many tuples can \(\sigma_c(R) \) have?

Variants of Selection

- Various variants of RA may allow different languages for specifying selection predicates
 - e.g., \(c > a^2 + b^2 \); name starts with ‘A’, etc.
- Common to all predicate formalisms: a predicate applies to a single tuple
- Cannot state cross-tuple conditions, e.g.,
 - “there is another tuple with the same name”
 - “contains at least 100 tuples”
Renaming by Example

\[R = \begin{array}{c|ccc}
\text{student} & \text{year} & \text{course} & \text{grade} \\
Alma & 1 & DB & 80 \\
Alma & 1 & PL & 94 \\
Ahuva & 2 & DB & 72 \\
\end{array} \]

\[\rho_{\text{year/level}}(R) = \begin{array}{c|ccc}
\text{student} & \text{level} & \text{course} & \text{grade} \\
Alma & 1 & DB & 80 \\
Alma & 1 & PL & 94 \\
Ahuva & 2 & DB & 72 \\
\end{array} \]

Definition of Renaming

- Renaming is a unary operator of the form \(\rho_{A/B} \) where \(A \) and \(B \) are attribute names.
- **Legal input:** A relation with a header that contains \(A \) and does not contain \(B \).
- Renaming changes only the header—attribute \(A \) becomes \(B \).
- Formally, \(\rho_{A/B}(R) \) is the relation \(S \) with
 - The header of \(R \) with \(A \) replaced by \(B \)
 - The tuple set of \(R \)

Q: If \(R \) has 1000 tuples, how many tuples can \(\rho_{A/B}(R) \) have?

Union and Difference by Example

\[R = \begin{array}{c|c}
\text{student} & \text{year} \\
Alma & 1 \\
Anna & 1 \\
Ahuva & 2 \\
\end{array} \]

\[S = \begin{array}{c|c}
\text{student} & \text{year} \\
Alma & 1 \\
Amir & 3 \\
\end{array} \]

\[R \cup S = \begin{array}{c|c}
\text{student} & \text{year} \\
Alma & 1 \\
Anna & 1 \\
Ahuva & 2 \\
Amir & 3 \\
\end{array} \]

\[R \setminus S = \begin{array}{c|c}
\text{student} & \text{year} \\
Anna & 1 \\
Ahuva & 2 \\
Amir & 3 \\
\end{array} \]
Definition of Union and Difference

- Binary operators, interpreted as operations over the tuple sets
- **Legal input**: a pair of relations \(R \) and \(S \) with the exact same header

 - We then say that \(R \) and \(S \) are *union compatible*

- Formally:

 - \(R \cup S \) is the relation with the header of \(R \) (and \(S \)) and the union of the tuple sets

 - \(R \setminus S \) is the relation with the header of \(R \) (and \(S \)) and the difference between the tuple sets

Q: If each of \(R \) and \(S \) have 1000 tuples, how many tuples can be in \(R \cup S \) ? \(R \setminus S \) ?

Cartesian Product by Example

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

\[R = \]

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
</tbody>
</table>

\[S = \]

\[R \times S = \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
<td>76</td>
<td>OS</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
<td>76</td>
<td>OS</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
<td>76</td>
<td>OS</td>
</tr>
</tbody>
</table>

Definition of Cartesian Product

- Binary operator, similar to set product, but each output pair is combined into a single tuple
- **Legal input**: A pair of relations with disjoint sets of attributes

 - So how to cross-product Mom(ssn) with Dad(ssn)?

- Formally, let \(R \) and \(S \) have the headers \((A_1,...,A_k) \) and \((B_1,...,B_m) \), respectively; then \(R \times S \) is the relation \(T \) with:

 - **Header** \((A_1,...,A_k,B_1,...,B_m) \)

 - **Tuple set** \(\{ r \circ s | r \in R \text{ and } s \in S \} \)

 - \(\circ \) denotes concatenation

Q: If each of \(R \) and \(S \) have 1000 tuples, how many tuples can be in \(R \times S \)?
Shorthand Notation

For Cartesian product of named relations (e.g., R, S), we actually allow common attributes, and implicitly assume their renaming to name.attribute

\[
R = \begin{array}{ccc}
\text{sid} & \text{name} & \text{year} \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array} \quad \quad S = \begin{array}{cc}
\text{sid} & \text{cid} \\
861 & 23 \\
753 & 45 \\
\end{array}
\]

\[
R \times S = \begin{array}{cccc}
\text{R.sid} & \text{name} & \text{year} & \text{S.sid} & \text{cid} \\
861 & Alma & 2 & 861 & 23 \\
753 & Amir & 1 & 861 & 23 \\
955 & Ahuva & 2 & 861 & 23 \\
\end{array}
\]

Parentheses Convention

• We have defined 3 unary operators and 3 binary operators

• It is acceptable to omit the parentheses from o(R) when o is unary
 – Then, unary operators take precedence over binary ones

• Example:
 \[(\sigma_{\text{course}='DB'} (\text{Course})) \times (\rho_{\text{cid}/\text{sid}} (\text{Studies})) \text{ becomes } \sigma_{\text{course}='DB'} \text{Course} \times \rho_{\text{cid}/\text{sid}} \text{Studies} \]

Composition Example

\[\pi_{\text{name}}(\pi_{\text{sid}}(\sigma_{\text{topic}='DB'} (\text{Course}) \times \rho_{\text{cid}/\text{sid}} (\text{Studies})))) \]

Names of students who study DB:

\[
\begin{array}{ccc}
\text{Student} & \text{Course} & \text{Studies} \\
\text{sid} & \text{name} & \text{year} & \text{cid} & \text{topic} & \text{sid} & \text{cid} \\
861 & Alma & 2 & 23 & PL & 861 & 23 \\
753 & Amir & 1 & 45 & DB & 861 & 45 \\
955 & Ahuva & 2 & 76 & OS & 753 & 45 \\
\end{array}
\]
\begin{align*}
\pi_{\text{name}}(\sigma_{\text{sid}=\text{sid1}}(\pi_{\text{sid}}(\pi_{\text{sid}}(\pi_{\text{topic='DB'}}(\text{Course} \times \pi_{\text{sid}}(\text{Student})))))))
\end{align*}

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
</tbody>
</table>

\begin{align*}
\pi_{\text{name}}(\sigma_{\text{sid}=\text{sid1}}(\pi_{\text{sid}}(\pi_{\text{topic='DB'}}(\text{Course} \times \pi_{\text{sid}}(\text{Student})))))))
\end{align*}

<table>
<thead>
<tr>
<th>sid</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>

\begin{align*}
\pi_{\text{name}}(\sigma_{\text{sid}=\text{sid1}}(\pi_{\text{sid}}(\pi_{\text{topic='DB'}}(\text{Course} \times \pi_{\text{sid}}(\text{Student})))))))
\end{align*}

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>DB</td>
</tr>
</tbody>
</table>

\begin{align*}
\pi_{\text{name}}(\sigma_{\text{sid}=\text{sid1}}(\pi_{\text{sid}}(\pi_{\text{topic='DB'}}(\text{Course} \times \pi_{\text{sid}}(\text{Student})))))))
\end{align*}

<table>
<thead>
<tr>
<th>sid</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>
\[\pi_{\text{name}}(\pi_{\text{cid}}(\pi_{\text{sid}}(\sigma_{\text{topic} = 'DB'}(\text{Course} \times \pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{topic} = 'PL'}(\text{Course}) \times \pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{topic} = 'OS'}(\text{Course})))))))))) \]

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
<th>sid</th>
<th>cid1</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>DB</td>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\pi_{\text{name}}(\pi_{\text{cid}}(\pi_{\text{sid}}(\sigma_{\text{topic} = 'DB'}(\text{Course} \times \pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{topic} = 'PL'}(\text{Course}) \times \pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{topic} = 'OS'}(\text{Course}))))))))))) \]

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
<th>sid</th>
<th>cid1</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>DB</td>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
<td>753</td>
<td>45</td>
</tr>
</tbody>
</table>

\[\pi_{\text{name}}(\pi_{\text{cid}}(\pi_{\text{sid}}(\sigma_{\text{topic} = 'DB'}(\text{Course} \times \pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{topic} = 'PL'}(\text{Course}) \times \pi_{\text{sid}}(\pi_{\text{cid}}(\sigma_{\text{topic} = 'OS'}(\text{Course}))))))))))) \]

<table>
<thead>
<tr>
<th>cid</th>
<th>sid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>861</td>
<td>DB</td>
</tr>
<tr>
<td>45</td>
<td>753</td>
<td>DB</td>
</tr>
</tbody>
</table>
\[\pi_{\text{name}}(\pi_{\text{sid}}(\text{Student} \times \pi_{\text{topic}}(\pi_{\text{cid}}(\text{Course} \times \pi_{\text{cid}}(\text{Studies})))))) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
<tr>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\pi_{\text{name}}(\pi_{\text{sid}}(\text{Student} \times \pi_{\text{topic}}(\pi_{\text{cid}}(\text{Course} \times \pi_{\text{cid}}(\text{Studies})))))) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
<tr>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\pi_{\text{name}}(\pi_{\text{sid}}(\text{Student} \times \pi_{\text{topic}}(\pi_{\text{cid}}(\text{Course} \times \pi_{\text{cid}}(\text{Studies})))))) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
<tr>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>

\[\pi_{\text{name}}(\pi_{\text{sid}}(\text{Student} \times \pi_{\text{topic}}(\pi_{\text{cid}}(\text{Course} \times \pi_{\text{cid}}(\text{Studies})))))) \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>year</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>2</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>1</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cid</th>
<th>topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>PL</td>
</tr>
<tr>
<td>45</td>
<td>DB</td>
</tr>
<tr>
<td>76</td>
<td>OS</td>
</tr>
<tr>
<td>861</td>
<td>23</td>
</tr>
<tr>
<td>861</td>
<td>45</td>
</tr>
<tr>
<td>753</td>
<td>45</td>
</tr>
<tr>
<td>955</td>
<td>76</td>
</tr>
</tbody>
</table>
Task

Phrase a query that finds the names of students who get private lessons (i.e., the student takes a course that no one else takes)

```sql
π_{name}(π_{sid}((π_{name}(Student × π_{sid}(π_{topic}(Course × π_{sid}(Studies))))))
```

Outline

- Background
- The Primitive Operators
 - Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization
Implied Operators

• We now discuss relational operators that are:
 – Not among the 6 basic operators
 – Can be expressed in RA (implied)
 – Very common in practice
• Enhancing the available operator set with the implied operators is a good idea!
 – Easier to write queries
 – Easier to understand/maintain queries
 – Easier for DBMS to apply specialized optimizations

Outline

• Background
• The Primitive Operators
• Implied Operators
 ▶ Joins
 ▶ Division
• Equivalence & Independence
• Taste of Query Optimization

Joins

• Cartesian product is rarely standalone without selection, and is commonly followed by projection
• The combination $\pi \sigma \times$ is referred to generally as “join”
• There are several common cases that apply specific selections and projections, which we introduce here
Conditional Join

- Binary operator $R \bowtie_c S$ where c is a condition over the header of $R \times S$
- Shorthand notation for: $\sigma_c(R \times S)$
- Example: $R \bowtie_{a=b \land c<d} S$

Theta Join and Equijoin

- **Theta join** is a special case of conditional join \bowtie_c where c has the form $A \theta B$ or $A \theta v$ where A and B are attributes, v a constant value, and θ a comparison operator
 - Example: $R \bowtie_{c<d} S$
- **Equijoin** is the special case where c has the form $A = B$ where A and B belong to the left and right operands, respectively
 - Example: $Course \bowtie_{name=course} Studies$

Equijoin Example

$S = \begin{array}{ccc}
sid & name & year \\
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}$

$T = \begin{array}{cc}
stud & course \\
861 & PL \\
861 & DB \\
762 & OS \\
955 & OS \\
\end{array}$

$S \bowtie_{sid=stud} T = \begin{array}{ccc}
sid & name & year & stud & course \\
861 & Alma & 2 & 861 & PL \\
861 & Alma & 2 & 861 & DB \\
955 & Ahuva & 2 & 955 & OS \\
\end{array}$
Natural Join

- Cartesian product, equality on all common attributes, projection on unique attributes
- Formally, $R \bowtie S$ is equivalent to:
 $$
 \pi_{B_1, \ldots, B_m, C_1, \ldots, C_l} \sigma_{A_1 = A'_1, \ldots, A_k = A'_k}(R \times \rho_{A'_1/A_1, \ldots, A'_k/A_k}S)
 $$
 where:
 - (B_1, \ldots, B_m) is the header of R
 - A_1, \ldots, A_k are the attributes common to R and S
 - (C_1, \ldots, C_l) is the header of S with A_1, \ldots, A_k removed
- Should we care about which new names are defined by renaming?

Natural Join Example

$S = \begin{array}{ccc}
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}$

$T = \begin{array}{ccc}
861 & PL \\
861 & DB \\
762 & OS \\
955 & OS \\
\end{array}$

$S \bowtie T = \begin{array}{ccc}
861 & Alma & 2 & PL \\
861 & Alma & 2 & DB \\
955 & Ahuva & 2 & OS \\
\end{array}$

Semijoin

- Semijoin of R and S is the restriction of R to the tuples that can naturally join with S
- Formally: $R \bowtie S$ is the operator equivalent to
 $$
 \pi_{A_1, \ldots, A_m}(R \bowtie S)
 $$
 where (A_1, \ldots, A_m) is the header of R
Semijoin Example

\[
S = \begin{array}{ccc}
861 & Alma & 2 \\
753 & Amir & 1 \\
955 & Ahuva & 2 \\
\end{array}
\]

\[
T = \begin{array}{ccc}
861 & PL & \\
861 & DB & \\
955 & OS & \\
\end{array}
\]

\[
S \bowtie T = \begin{array}{ccc}
861 & Alma & 2 \\
955 & Ahuva & 2 \\
\end{array}
\]

Intersection

- The usual binary set-theoretic operator \(\cap \)
- **Legal input:** a pair of relations that are union compatible (i.e., same header)
- Special case of natural join and semijoin
 - If \(R \) and \(S \) have the same header, then \(R \bowtie S \) and \(R \bowtie S \) are equal to \(R \cap S \)

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization
Who took all core courses?

Division

• Consider two relations $R(X,Y)$ and $S(Y)$
 – Here, X and Y are tuples of attributes

• $R \div S$ is the relation $T(X)$ that contains all the Xs that occur with every Y in S

Formal Definition

• Legal input: (R,S) such that R has all the attributes of S

• $R \div S$ is the relation T with:
 – The header of R, with all attributes of S removed
 – Tuple set
 $\{t[X] \in \pi_X R \mid t[X,Y] \in R$ for all $s[Y] \in S\}$

• This is an abuse of notation, since the attributes in X need not necessarily come before those of Y
Questions

\[(R \times S) \div S = ? \]
\[(R \times S) \div R = ? \]

\(Q: \) If \(R \) has 1000 tuples and \(S \) has 100 tuples, how many tuples can be in \(R \div S \)?

\(Q: \) If \(R \) has 1000 tuples and \(S \) has 1001 tuples, how many tuples can be in \(R \div S \)?

Studies

<table>
<thead>
<tr>
<th>sid</th>
<th>student</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>DB</td>
</tr>
<tr>
<td>861</td>
<td>Alma</td>
<td>PL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>DB</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>AI</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>PL</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>DB</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>AI</td>
</tr>
</tbody>
</table>

CourseType

<table>
<thead>
<tr>
<th>course</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB</td>
<td>core</td>
</tr>
<tr>
<td>PL</td>
<td>core</td>
</tr>
<tr>
<td>AI</td>
<td>elective</td>
</tr>
<tr>
<td>DC</td>
<td>elective</td>
</tr>
</tbody>
</table>

Who took all core courses?

\[
\text{Studies} \div \pi_{\text{course}} \sigma_{\text{type}=\text{core}} \text{CourseType}
\]

R+\text{S in Primitive RA}

\[
\pi_X R \setminus \pi_X \left(\left(\pi_X R \times S \right) \setminus R \right)
\]

Each \(X \) of \(R \) w/ each \(Y \) of \(S \) s.t. \(X \) in \(R \), \(Y \) in \(S \), but \((X,Y) \) not in \(R \).

\(R \div S \) in \(R \) where for some \(Y \) in \(S \), \((X,Y) \) is not in \(R \).
Examples of Inexpressible Queries

Some very useful queries cannot be expressed in RA!

<table>
<thead>
<tr>
<th>follower</th>
<th>followed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amir</td>
<td>Alma</td>
</tr>
<tr>
<td>Ahuva</td>
<td>Alma</td>
</tr>
<tr>
<td>Alma</td>
<td>Amir</td>
</tr>
<tr>
<td>Anna</td>
<td>Ahuva</td>
</tr>
</tbody>
</table>

Aggregates: How many followers does Ahuva have? How many persons does one follow on average?

Transitive closure: Is there a follower path from Anna to Amir? Is there a cycle?

(How can one prove inexpressiveness?)

Outline

- Background
- The Primitive Operators
- Implied Operators
 - Joins
 - Division
- Equivalence & Independence
- Taste of Query Optimization

RA Expressions (Queries)

- Let S be a relation schema
 - Recall: S is a finite set of named relation schemas
- An RA expression (RA query) over S is an expression in RA, applied to the relation names of S
- For example:
 - $\pi_{sid}(\sigma_{sid=stud}(\text{Student} \times \rho_{sid/stud}(\text{Studies})))$
Query Result

• Let S be a database schema
• Let ϕ be an RA query over S
• Let I be a database over S
• The result of evaluating ϕ over I, denoted $\phi(I)$, is the relation obtained by applying ϕ to the relations of I
 – That is, every relation name is replaced with the corresponding relation in I

Equivalence of RA Expressions

• Let S be a database schema, and let ϕ and ψ be two RA queries over S
• We say that ϕ and ψ are equivalent, denoted $\phi \equiv \psi$, if:

 for every database I over S it holds that $\phi(I) = \psi(I)$

Who Cares?

• Query optimization: we wish to allow DBMS to replace a query with an equivalent one that is more efficient to evaluate
• Expressiveness: do different sets of operators “give the same” class of expressible questions?
• Examples on $R(A,B)$, $S(A,B)$, $T(A,B)$
 – $\sigma_{A='a'}(R \bowtie S) \equiv (\sigma_{A='a'} R) \bowtie (\sigma_{A='a'} S)$ (selection push)
 – $\pi_A(R \cup S) \equiv \pi_A(R) \cup \pi_A(S)$
 – $(R \bowtie S) \bowtie T \equiv (T \bowtie S) \bowtie R$
 – Is it true that $\rho_{R.A/R.A}(R \times S) \equiv \pi_R$?
Containment

- Let S be a database schema, and let φ and ψ be two RA queries over S.
- We say that φ is contained in ψ, denoted $\varphi \subseteq \psi$, if for every instance I over S we have $\varphi(I) \subseteq \psi(I)$.

Q: How does containment relate to equivalence?

\[\pi_{\text{sid}}(\text{Student} \bowtie \text{Studies}) \equiv \pi_{\text{sid}}\text{Student} \cap \pi_{\text{sid}}\text{Studies} ? \]

\[\pi_{\text{sid}}(\text{Student} \bowtie \text{Studies}) \subseteq \pi_{\text{sid}}\text{Student} \cap \pi_{\text{sid}}\text{Studies} ? \]

Q: How do we prove containment? equivalence?

\[\pi_{\text{sid}}(\text{Student} \cap \text{TA}) \equiv \pi_{\text{sid}}\text{Student} \cap \pi_{\text{sid}}\text{TA} ? \]

\[\pi_{\text{sid}}(\text{Student} \cap \text{TA}) \subseteq \pi_{\text{sid}}\text{Student} \cap \pi_{\text{sid}}\text{TA} ? \]

\[\pi_{\text{sid}}(\text{Student} \cap \text{TA}) \supseteq \pi_{\text{sid}}\text{Student} \cap \pi_{\text{sid}}\text{TA} ? \]

Q: How do we prove non-containment? non-equivalence?
6 Primitive Operators

1. Projection (\(\pi\))
2. Selection (\(\sigma\))
3. Renaming (\(\rho\))
4. Union (\(\cup\))
5. Difference (\(\setminus\))
6. Cartesian Product (\(\times\))

Q: Is this a "good" set of primitives? Could we drop an operator "without losing anything"?

Independence

- Let \(o\) be an RA operator, and let \(A\) be a set of RA operators.
- We say that \(o\) is independent of \(A\) if \(o\) cannot be expressed in \(A\); that is, no expression in \(A\) is equivalent to \(o\).

Independence among Primitives

Theorem: Each of the six primitives is independent of the other five.

Proof:
- Separate argument for each of the six.
- Arguments follow a common pattern (next slide).
- We will do one operator here (union).
Recipe for Proving Independence

• Proving that operator \(o \) is independent:
 1. Fix a schema \(S \) and an instance \(I \) over \(S \)
 2. Find a property \(P \) over relations
 3. Prove that for every expression \(\varphi \) over \(S \) that does not use \(o \), the relation \(\varphi(I) \) satisfies \(P \)
 • Such proofs are typically by induction on the size of the expression, since operators compose
 4. Find an expression \(\psi \) such that \(\psi \) uses \(o \) and \(\psi(I) \) violates \(P \)

Independence of Union

1. Fix a schema \(S \) and an instance \(I \) over \(S \)
 - \(S: R(A), S(A) \) \(I: \{R(0), S(1)\} \)
2. Find a property \(P \) over relations
 - \#tuples < 2
3. Prove that for every expression \(\varphi \) that does not use \(o \), the relation \(\varphi(I) \) satisfies \(P \)
 - Induction base: \(R \) and \(S \) have \#tuples<2
 - Inductive: If \(\varphi_1(I) \) and \(\varphi_2(I) \) have \#tuples<2, then so do \(\sigma_c(\varphi_1(I)), \pi_{A_1}(\varphi_1(I)), \rho_{A_2}(\varphi_1(I)), \varphi_1(I) \bowtie \varphi_2(I), \varphi_1(I) \setminus \varphi_2(I) \)
4. Find an expression \(\psi \) such that \(\psi \) uses \(o \) and \(\psi(I) \) violates \(P \)
 - \(\psi=R\cup S \)

Outline

• Background
• The Primitive Operators
• Implied Operators
 ▪ Joins
 ▪ Division
• Equivalence & Independence
• Taste of Query Optimization
Task: find Israelis who like albums with dog pictures

Which of the equivalent expressions is more efficient to apply?

\[\pi_{\text{ssn}} (\pi_{\text{topic}=\text{dog}} (\pi_{\text{country}=\text{Israel}} (\text{Likes} \bowtie (\text{Person} \bowtie \text{Picture})))) \]

\[\pi_{\text{ssn}} (\pi_{\text{country}=\text{Israel}} (\text{Likes} \bowtie (\text{Person} \bowtie \text{Picture}))) \]

\[\pi_{\text{ssn}} (\pi_{\text{topic}=\text{dog}} (\text{Likes} \bowtie (\text{Person} \bowtie \text{Picture}))) \]

\[\pi_{\text{ssn}} (\pi_{\text{album} \boweq \text{topic}=\text{dog}} (\text{Likes} \bowtie (\text{Person} \bowtie \text{Picture}))) \]

Rules of Thumb for Optimization

- Main computational challenges in RA:
 - Large intermediate results
 - Join is expensive
- Make intermediate results as small as possible before joining (while preserving equivalence)
 - Apply selection and projection as early as possible ("push select/projection")
 - Reorder joins to minimize intermediate relations
- Some optimization decisions are "always beneficial" (e.g., push selection) while others require knowledge on the data (e.g., join order)

Pushing Projection

- Projection reduces the length of each row, and can substantially reduce the number of rows
 - Example: \(\text{Person(ssn,country)} \)
- Consider the query \(\pi_X (R_1 \bowtie R_2) \); denote:
 - \(Y = R_1 \cap R_2 \) (i.e. the attributes in both \(R_1 \) and \(R_2 \))
 - \(X_1 = X \cap R_1 \)
 - \(X_2 = X \cap R_2 \)
- (Note the abuse of notation – we mix attribute sequences with attributes sets)
- We would like to push projections into the join, that is:
 \[\pi_X (\pi_{X_1} R_1 \bowtie \pi_{X_2} R_2) \]
- Which \(Z_1 \) and \(Z_2 \) can work (equivalence preserved)?
Correct Projection Push

\[\pi_x(R_1 \bowtie R_2) \equiv \pi_x(R_1) \bowtie \pi_x(R_2) \]

When we push projection, we need to retain all the attributes that are used for (1) joining, and (2) operations outside the join.

Pushing Down the Expression Tree

Selection Push

- Can we rewrite \(\sigma_c(R_1 \bowtie R_2) \) as \((\sigma_c R_1 \bowtie \sigma_c R_2) \)?
- If all the attributes of \(C \) are in \(R_1 \), then
 \(\sigma_c(R_1 \bowtie R_2) \equiv (\sigma_c R_1 \bowtie R_2) \)
- If all the attributes of \(C \) are in \(R_2 \), then
 \(\sigma_c(R_1 \bowtie R_2) \equiv (R_1 \bowtie \sigma_c R_2) \)
- If all the attributes of \(C \) in both \(R_1 \) and \(R_2 \), then
 \(\sigma_c(R_1 \bowtie R_2) \equiv (\sigma_c R_1 \bowtie \sigma_c R_2) \)
- Pushing selection is generally beneficial; we may need some rewriting to get opportunities...
Examples of Rewriting Operations

- Splitting conjunctions:
 \[\sigma_{c \land d}(R) \equiv \sigma_c(\sigma_d(R)) \equiv \sigma_d(\sigma_c(R)) \]
 - Applies to disjunction as well?

- Pushing through selection:
 \[\sigma_c(\sigma_d(R)) \equiv \sigma_d(\sigma_c(R)) \]

- Pushing through projection:
 \[\sigma_c(\pi_A(R)) \equiv \pi_A(\sigma_c(R)) \]
 - Assuming that \(c \) uses only attributes from \(A \)!

Pushing Down the Expression Tree

\[\sigma_{c \land d}(R_1 \bowtie R_2) \equiv \pi_X(\pi_Y(\sigma_{c \land d}(R_1 \bowtie R_2))) \]

Rewriting Joins

- Up to order of attributes, the natural join is **commutative** and **associative**
 - Commutative: \(R \bowtie S \equiv S \bowtie R \)
 - Associative: \((R \bowtie S) \bowtie T = R \bowtie (S \bowtie T) \)

- Proof: straightforward

- So, given an RA query that involves only natural joins, apply the joins in whatever order you want (similarly to *addition*)
 - *We may need to reorder attributes... nonissue*
Example

\[\pi_{\text{ssn}} (\sigma_{\text{country}='\text{Israel'}} (\text{Person} \bowtie (\text{Likes} \bowtie \text{Picture}))) \]

- Reorder joins

\[\pi_{\text{ssn}} (\sigma_{\text{topic}='\text{dog'}} (\text{Person} \bowtie (\text{Likes} \bowtie \text{Picture}))) \]

- Split selection

\[\pi_{\text{ssn}} (\sigma_{\text{topic}='\text{dog'}} \sigma_{\text{country}='\text{Israel'}} (\text{Person} \bowtie (\text{Likes} \bowtie \text{Picture}))) \]

- Push selection

\[\pi_{\text{ssn}} (\sigma_{\text{country}='\text{Israel'}} (\text{Person} \bowtie (\text{Likes} \bowtie \text{Picture}))) \]

- Push selection (x2)

\[\pi_{\text{ssn}} (\pi_{\text{ssn}} (\text{Person} \bowtie (\text{Likes} \bowtie (\pi_{\text{album}} \sigma_{\text{topic}='\text{dog'}} \text{Picture})))) \]

- Push projection

\[\pi_{\text{ssn}} (\pi_{\text{ssn}} (\text{Person} \bowtie (\text{Likes} \bowtie (\pi_{\text{album}} \sigma_{\text{topic}='\text{dog'}} \text{Picture})))) \]

- Push projection

\[\pi_{\text{ssn}} (\pi_{\text{ssn}} (\text{Person} \bowtie (\text{Likes} \bowtie (\pi_{\text{album}} \sigma_{\text{topic}='\text{dog'}} \text{Picture})))) \]

- Push projection

\[\pi_{\text{ssn}} (\pi_{\text{ssn}} (\text{Person} \bowtie (\text{Likes} \bowtie (\pi_{\text{album}} \sigma_{\text{topic}='\text{dog'}} \text{Picture})))) \]

- Remove redundant projection

Example (cont’d)

\[\pi_{\text{ssn}} (\pi_{\text{ssn}} (\text{Person} \bowtie (\text{Likes} \bowtie \text{Picture}))) \]

Perspective on Query-Plan Optimization

- Algorithms for RA query-plan optimization have been the subject of much research
- One of the first and common algorithms is the “Sellinger algorithm” from IBM Almaden
 - [Patricia G. Selinger, Morton M. Astraham, Donald D. Chamberlin, Raymond A. Lorie, Thomas G. Price: Access Path Selection in a Relational Database Management System. SIGMOD Conference 1979: 23-34]
 - Idea: dynamic programming; compute cost & size estimation for every possible subquery, using the costs of smaller subqueries
- General toolkit and concepts apply to many data/query models: algebra, equivalence, cost, plan optimization
Note on Alternative Approaches

- In a recent line of research, several alternative algorithms for RA computation are developed
- These algorithms do not construct intermediate results from sub-queries
 - Rather, compute answers by simultaneously scanning all input relations
- More reading:
 - LogicBlox’s Leapfrog Trie Join
 - Stanford’s Minesweeper
 - [Hung Q. Ngo, Dung T. Nguyen, Christopher Re, Atri Rudra: Beyond worst-case analysis for joins with minesweeper. PODS 2014: 234-245]
- Not discussed in this course