From ERD to Normalization

- We have learned how to design schemas using ERDs
- But it is often not enough for a proper translation into well designed relations
- ERD is limited in constraint representation; we need a more careful design to enforce such constraints
- It may be challenging to avoid anomalies when dependencies are complicated

Example

- A track has at most one consultant per faculty
- A track is contained in a single campus
- A consultant belongs to a single campus and faculty
- A faculty is in a single campus

The Refined Design Process (Normalization)

1. Define the involved attributes
2. Determine what constraints / dependencies hold in real life
3. Decide on desired properties
4. Decompose into multiple good (“normalized”) schemas
Notation

• During this lecture we view a relation schema as a pair \((U,F)\) where:
 – \(U\) is a finite set of attributes
 – \(F\) is a set of FDs over \(U\)
• In particular, we ignore:
 – relation names
 – order among attributes

Basic Terminology

• Let \((U,F)\) be a relation schema
• Recall: A superkey is a set \(K\) of attributes such that \(K^+\) contains every attribute in \(U\)
• Recall: A key is a superkey \(K\) that does not contain any other superkey
 – That is, if \(Y \subset K\) then \(Y\) is not a superkey
• Attributes of keys are called prime
• “Schema normalization” constrains the relationship between FDs, keys, prime attributes and nonprime attributes

Outline

• Introduction
 ▶ Normal Forms
 • BCNF
 • 3NF
• Decomposition
 ▶ NF Decompositions
 ▶ Preserving Data
 ▶ Preserving Dependencies
• Decomposition Algorithms
 • 3NF
 • BCNF
 • Note on 4NF

Our Focus

• We mainly focus on BCNF and 3NF
 – Historically BCNF came after 3NF, but we start with BCNF since it is simpler
• In the end we will briefly review 4NF
Boyce-Codd Normal Form (BCNF)

A schema \((U,F)\) is in BCNF if every nontrivial FD implied by \(F\) has a superkey on its premise (lhs)

That is, every \(X \rightarrow Y\) in \(F^*\) is such that
- \(X\) is a superkey; or
- \(Y \subseteq X\)

Examples

- Faculty:
 - follows, followed, fid
 - BCNF
- Social network:
 - follows, followed, fid
 - BCNF
- Address:
 - state, city, street, zip
 - not BCNF
- Tracks:
 - track, faculty, consultant, campus
 - not BCNF

Can BCNF be Tested Efficiently?

On the face of it, we need to consider every derived FD (exponentially many); however:

THEOREM: The following are equivalent:
1. The schema \((U,F)\) is in BCNF (i.e., every nontrivial \(X \rightarrow Y\) is such that \(X\) is a superkey)
2. In every nontrivial \(X \rightarrow Y\) in \(F\), \(X\) is a superkey
Hence, it suffices to check \(F\)
Proof not given
- But which direction is straightforward?
- So what would be an efficient BCNF testing?

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Note on 4NF

Third Normal Form (3NF)

Recall: an attribute \(A\) is prime if it is a part of some key
- Warning: not “superkey,” every attribute belongs to some superkey
A schema is in 3NF if for every nonprime \(A\) and nontrivial derived \(X \rightarrow A\), the set \(X\) is a superkey
Equivalently, for every \(X \rightarrow A\) in \(F^*\) at least one of the following holds:
- \(X\) is a superkey
- \(A \in X\)
- \(A\) is prime

Examples

- Faculty:
 - name, symbol, dean
 - BCNF
 - name, symbol, symbol = dean, dean = name
- Social network:
 - follows, followed, fid
 - BCNF
 - follows, followed = fid, fid = follows, followed
- Address:
 - state, city, street, zip
 - not BCNF
 - state, city, street = zip, zip = state
- Tracks:
 - track, faculty, consultant, campus
 - not BCNF
 - track, faculty = consultant, consultant = faculty, track = campus, faculty = campus
The following algorithm works:

- For every nontrivial FD $X \rightarrow Y$ in F
 1. Check whether X is a superkey
 2. Check whether every attribute in $Y \setminus X$ is prime
- As we know, (1) can be tested efficiently
- What about (2)?
 - It is NP-complete! (unlikely to be solvable in polynomial time)
- And in fact, testing whether a schema is in 3NF is an NP-complete problem [Jou, Fischer 82]

Decomposition

- We can fix a “badly designed” schema by decomposing it into several smaller schemas
- But we need to do so correctly!
 - Do not change our intended information
 - Do not violate the FDs
 - Get a “well designed” fixed schema
- In this part, we will make the above formal
- First, we need a notation

Restricting a Set of FDs

- Let (U, F) be a schema
- Let W be a subset of U
- We denote by $F[W]$ the set of all the FDs $X \rightarrow Y$ in F such that $XY \subseteq W$

Formal Definition

- A decomposition of a schema (U, F) is a collection $(X_1, F_1), \ldots, (X_k, F_k)$ of schemas such that:
 - $U = X_1 \cup \cdots \cup X_k$
 - That is, the X_i cover all the attributes in U
 - For $i = 1, \ldots, k$ we have $F_i = \pi_X F$ (i.e., F_i is induced on X_i)
Representing F_i

- Given the schema (U, F), it suffices to represent a decomposition using the collection $\{X_1, \ldots, X_k\}$ without mentioning the FDs F_i
- Since F_i can be $F[X]$ up to equivalence
- Problem: naively constructing F_i as $F_i^+ [X_i]$ can be expensive, since F^+ and $F_i^+ [X_i]$ can be exponentially larger than U
 - This problem is unavoidable: It may be that $F_i^+ [X_i]$ is not equivalent to any sub-exponential #FDs!
- We keep this problem in mind – we will not assume that $F_i^+ [X_i]$ can be materialized efficiently

Obtaining Normal Forms

- Let N be a normal form (e.g., 3NF, BCNF)
- An N decomposition of a schema (U, F) is a decomposition $\{X_1, \ldots, X_k\}$ of (U, F) such that each $(X_i, F[X_i])$ is in N
- We will discuss 3NF decompositions and BCNF decompositions

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Note on 4NF

Examples

3NF decomposition? BCNF decomposition?

<table>
<thead>
<tr>
<th>ABCD</th>
<th>AD</th>
<th>BC</th>
<th>BD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B, B \rightarrow C, ABC \rightarrow D, D \rightarrow B$</td>
<td>$A \rightarrow D$</td>
<td>$B \rightarrow C$</td>
<td>$D \rightarrow B$</td>
</tr>
<tr>
<td>Answer: BCNF, 3NF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABCD</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B, B \rightarrow C, ABC \rightarrow D, D \rightarrow B$</td>
<td>$A \rightarrow C$</td>
</tr>
<tr>
<td>Answer: 3NF, not BCNF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABCD</th>
<th>AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A \rightarrow B, B \rightarrow C, ABC \rightarrow D, D \rightarrow B$</td>
<td>$A \rightarrow D$</td>
</tr>
<tr>
<td>Answer: not 3NF, not BCNF</td>
<td></td>
</tr>
</tbody>
</table>

Good Decomposition?

Can you restore?

person → building, room

<table>
<thead>
<tr>
<th>person</th>
<th>building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>Taub 152</td>
</tr>
<tr>
<td>Amir</td>
<td>Meyer 35</td>
</tr>
<tr>
<td>Ahuva</td>
<td>Meyer 246</td>
</tr>
</tbody>
</table>
Lossless Decomposition

- Let \(\{X_1, \ldots, X_r\} \) be a decomposition of \((U,F) \).
- We say that \(\{X_1, \ldots, X_r\} \) is a **lossless decomposition** of \((U,F) \) if for all relations \(r \) over \((U,F) \) we have:
 \[\pi_{X_1}(r) \triangleright \cdots \triangleright \pi_{X_r}(r) = r \]
- Containment in one direction always holds:
 \[\pi_{X_i}(r) \triangleright \cdots \triangleright \pi_{X_r}(r) \supseteq r \]
- What about the other direction? Depends on \(F \)!

Example 1

<table>
<thead>
<tr>
<th>Person</th>
<th>Building</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>Meyer</td>
<td>152</td>
</tr>
<tr>
<td>Alma</td>
<td>Meyer</td>
<td>246</td>
</tr>
</tbody>
</table>

Example 2

<table>
<thead>
<tr>
<th>Person</th>
<th>Building</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>Meyer</td>
<td>152</td>
</tr>
<tr>
<td>Alma</td>
<td>246</td>
<td></td>
</tr>
</tbody>
</table>

Decision Algorithm

Losslessness Testing

Given:
- \(U, F, X_1, \ldots, X_r \)
- \(\{X_1, \ldots, X_r\} \) is a decomposition of \((U,F) \)

Goal:
- Determine whether \(\{X_1, \ldots, X_r\} \) is a lossless decomposition
- The definition of lossless is not constructive (check every possible relation)
- Next, we present a polynomial-time algorithm for this decision problem

The Case of Binary Decomposition

Theorem: Let \(\{X_1, X_2\} \) be a decomposition of \((U,F) \). The following are equivalent:
1. \(F = (X_1 \cap X_2) \rightarrow X_1 \) or \(F = (X_2 \cap X_1) \rightarrow X_2 \)
2. \(\{X_1, X_2\} \) is a lossless decomposition

So what would be a decision algorithm in this case?

Proof: 1\(\Rightarrow \)2

1. \(F = X_1 \cap X_2 \rightarrow X_1 \) or \(F = X_2 \cap X_1 \rightarrow X_2 \)
2. \(\{X_1, X_2\} \) is a lossless decomposition

We need to prove that 1 is here!

In any case, we have:
- to begin with
- Hence lossless!
Proof: not 1 ⇒ not 2
1. \(F \iff X_2 \iff X_1 \) or \(F \iff X_2 \iff X_1 \)
2. \((X_2, X_3)\) is a lossless decomposition

- Let \(X_{12}(X_2 \cap X_1) \) and suppose \(X_2 \nsubseteq X_2 \cdot X_1 \cdot X_2 \)
- Construct a relation \(r(t, u) \) over \(U \):
 - \(X_{12} = \{ X_2 \} \)
 - \(t \in X_{12} \iff t = (0, ..., 0) \)
 - \(u \in X_{13} \iff u = (1, ..., 1) \)
- Claim 1: \(r \vDash F \)
 - Proof similar to completeness of Armstrong's axioms
- Claim 2: \(\pi_{X_2}(r) \nsubseteq \pi_{X_2}(r) \neq r \)
 - The join contains a row with both 1s and 2s

Illustration: not 1 ⇒ not 2
1. \(F \iff X_2 \iff X_1 \) or \(F \iff X_2 \iff X_1 \)
2. \((X_2, X_3)\) is a lossless decomposition

The General Case

Lossless Testing

Given:
- \(U, F, X_1, ..., X_n \)
- \((X_2, X_3)\) is a decomposition of \((U, F)\)

Goal:
- Determine whether \((X_2, X_3)\) is a lossless decomposition

Next, we handle the general case of a decomposition (\(\succ 2\) schemas)

The Idea

We need to prove that \(i \) is here!

But some of the \(s_i \)s may be known due to the FDs!

The General Case

Lossless Testing

Given:
- \(U, F, X_1, ..., X_n \)
- \((X_2, X_3)\) is a decomposition of \((U, F)\)

Goal:
- Determine whether \((X_2, X_3)\) is a lossless decomposition

- 1st step: create the "known subset"
 - A table over \(U \), one tuple \(t \), for each \(X_i \), \(t[A_i] = a_i \) if \(X_i \) contains \(A_i \)
 and \(t[A_i] \neq a_i \) otherwise

- 2nd step: chase
 - While the table changes do:
 - Look for an FD violation and equate the conclusions
 - "Erase" - change every occurrence of one to the other
 - When replacing \(a_i \) with \(x_i \), change \(x_i \) to \(a_i \)

- 3rd step: Return true iff there is a row of \(a_i \)s
Step 1: construct the known subset

\[F = \{ A_3 \rightarrow A_5, A_4 \rightarrow A_5, A_5 \rightarrow A_2 \} \]

Step 2: chase

Step 3: return true

Think

- How do we generalize the proof of correctness from the two-table case?
- Why is this algorithm terminating in polynomial time?

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Note on 4NF

Preserving Dependencies

\[(U, F) \]

\[r \]

\[\{ F_1 \} \]

\[\{ F_2 \} \]

\[\{ F_3 \} \]

\[\{ F_4 \} \]

Is \(F \) preserved given that each \(F_i \) is preserved in each relation?

Example 1

\[\text{ABCD} \]

\[A \rightarrow B, B \rightarrow C, ABC \rightarrow D, D \rightarrow B \]

\[\{ AD, BD, BC \} \]

Are dependencies preserved in this decomposition?

Answer: Yes!

Example 2

\[\text{ABC} \]

\[A \rightarrow B, B \rightarrow C \]

\[\{ BC, AC \} \]

Are dependencies preserved in this decomposition?

Answer: No!

Is there any decomposition into binary schemas where dependencies are preserved?

Answer: No!
Formal Definition

- A decomposition \(X_1, ..., X_k \) of \((U, F)\) is dependency preserving if for all \(r_1, ..., r_k \) over \((X_1,F_1), ..., (X_k,F_k)\), respectively, where \(F_i = F(X_i) \), the relation \(r_i \) satisfies \(F_i \).
- Can we test whether a given decomposition has this property?

Theorem: The following are equivalent:

1. For all \(r_1, ..., r_k \) over \((X_1,F_1), ..., (X_k,F_k)\), respectively, the relation \(r_i \) satisfies \(F_i \).
2. \(F^* = (F_U \cup ...) \) satisfies \(F \).

Testing for Dependency Preservation

- We need to test whether \(F^* = (F_U \cup ...) \) satisfies \(F \).
- \(F^* \supseteq (F_U \cup ...) \), so \(F^* \supseteq (F_U \cup ... \cup F_k) \).
- So, need to test whether \(F^* \supseteq (F_U \cup ...) \).
- It suffices to test whether each \(X \rightarrow Y \) in \(F \) is implied by \(F_U \cup ... \cup F_k \).
- Next slide: efficient computation of the closure of \(X \) under \(F_U \cup ... \cup F_k \).

Without explicitly calculating the \(F_i \)'s!

Closure w.r.t. a Decomposition

Given:
- \(U, X_1, ..., X_k \)
- \((X_i, F_i) \) is a decomposition of \((U,F)\)
- \(X \subseteq U \)

Goal:
Compute the closure of \(X \) under \(F_U \cup ... \cup F_k \).

ClosureDecomp

```java
ClosureDecomp(X_i,F_i,X_1,...,X_k) {
    Y := X
    while(Y changes)
        for(i=1,...,k)
            Y := Y \cup (Closure(Y \cap X_i,F_i) \cap X_i)
    return Y
    }
```

Basic claim for \(Z \subseteq X_i \):
- \(Z \subseteq X_i \) if \(Y \subseteq \text{Closure}(Y \cap X_i,F_i) \cap X_i \)

Testing for Dependency Preservation

Dependency Preservation Testing

Given:
- \(U, F, X_1, ..., X_k \)
- \((X_i, F_i) \) is a decomposition of \((U,F)\)

Goal:
Determine whether \((X_i, F_i) \) is dependency preserving.

```
DepPreserving(X_1,...,X_k,F) {
    for all \( X \rightarrow Y \) in \( F \)
        if \( Y \subseteq \text{ClosureDecomp}(X_i,F_i,X_1,...,X_k) \)
            return false
    return true
}
```

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Not covered in the official course material

Decomposition Algorithms

- Given a normal form \(N \), we ask:
 - Is there always a lossless \(N \) decomposition?
 - Is there always a lossless & dependency preserving \(N \) decomposition?
 - Is there an efficient decomposition?
- The next slides discuss two algorithms
 - 3NF decomposition
 - Lossless, dependency preserving, p-time
 - BCNF decomposition
 - Lossless
 - Not covered in the official course material
Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Note on 4NF

Intuition

Idea: for dependency preservation, each $X \rightarrow A$ becomes a schema

Reminder: Minimal Cover

- Let F be a set of FDs
- A minimal cover of F is a set G of FDs such that $G^* = F^*$ with the following properties:
 - FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$
 - All FDs are required: no FD $X \rightarrow A$ in G is such that $G \setminus \{X \rightarrow A\} \models X \rightarrow A$
 - All attributes are required: no FD $X \rightarrow A$ in G is such that $G \models X \rightarrow A$
- Exercise: Suggest an algorithm for computing a minimal cover

Algorithm for 3NF Decomposition

```
3NFDec(U,F) {
    D = ∅
    G := MinCover(F)
    for all (X→A in G) do
        D := D∪(XA)
        if (no set in D is a superkey)
            D := D∪(FindKey(U,F))
        D := RemoveConained(D)
    return D
}
```

No need for schemas contained in others

Revised Example

```
F={A→B, AB→C, C→B, D→C}
```

About the Proof

- We will not prove the correctness here
- Still, what needs to be proved?
 - Resulting schemas are all in 3NF
 - Follows from minimality of the cover
 - Dependencies are preserved
 - Straightforward: all dependencies of the minimal cover are presented
 - Lossless
 - What would the lossless-testing algorithm do when one X is a key and all dependencies preserved?
Example Revisited

<table>
<thead>
<tr>
<th>track</th>
<th>consultant</th>
<th>campus</th>
<th>faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>track</td>
<td>faculty ⟷ consultant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>track</td>
<td>campuss</td>
<td></td>
<td></td>
</tr>
<tr>
<td>consultant</td>
<td>campus, faculty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>faculty</td>
<td>campus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The rest of the presentation is not in the official course material.

Optional Material

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Note on 4NF

Key Insight

- Recall: BCNF means that in every nontrivial $X \rightarrow Y$, the set X is a superkey
- CLAIM: If (U,F) is not in BCNF, then there is a lossless decomposition $\{X_1, X_2\}$ with $X_1, X_2 \subseteq U$
- Proof:
 - Let $X \rightarrow Y$ be a BCNF violation (X is not a superkey and Y is not a subset of X)
 - Take $X_1 = X'$ and $X_2 = X \cup (U \setminus X')$
 - Why are X_1 and X_2 strict subsets of U?
 - Why lossless?
 - Recall the theorem on binary lossless decompositions ...

BCNF Decomposition

```
BCNFDec(U,F) {
    if ((U,F) in BCNF)
        return (U)
    Find a BCNF violation $X \rightarrow Y$
    $X_1 := \text{Closure}(X,F)$
    $F_1 := F[X_1]
    X_2 := X \cup (U \setminus X_1)
    F_2 := F[X_2]
    return BCNFDec(X_1,F_1) \cup BCNFDec(X_2,F_2)
}
```

Execution Example

Are dependencies preserved in this decomposition?

Answer: Yes, we already saw that previously
About the Algorithm

- **Lossless**
 - Proof idea: every step is lossless
- **Exponential time** in the worst case
- There is a polynomial-time algorithm for BCNF decomposition
 - [Tsou, Fischer, Decomposition of a relation scheme into Boyce-Codd Normal Form, 1982]
- The algorithm does **not** preserve dependencies!
 - But the problem is not with the algorithm...

Can Dependencies be Preserved?

<table>
<thead>
<tr>
<th>ABC</th>
<th>AB → C</th>
<th>C → B</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC</td>
<td>C → B</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No BCNF decomposition of this schema preserves both dependencies (why?)

Conclusion: Lossless BCNF decomposition is always possible; lossless & dependency-preserving BCNF decomposition may be impossible

Outline

- Introduction
- Normal Forms
 - BCNF
 - 3NF
- Decomposition
 - NF Decompositions
 - Preserving Data
 - Preserving Dependencies
- Decomposition Algorithms
 - 3NF
 - BCNF
 - Note on 4NF

Fourth Normal Form (4NF)

- Recall: An MVD has the form X ↠ Y where X and Y are disjoint sets of attributes
 - For every two tuples that agree on X, swapping their Y component doesn’t change the relation
- Recall: An MVD X ↠ Y is trivial (always holds) if and only if Y = ø or Y = U \ X
- Recall: an FD X → Y can be viewed as a special type of the MVD X ↠ Y (why?)
- A schema (U, F), where F contains both FDs and MVDs, is in 4NF if every nontrivial FD/MVD has a superkey in its premise (lhs)
 - When all dependencies are FDs, same as BCNF

4NF Decomposition

- **Theorem**: Let (U, F) be a schema, where F contains both FDs and MVDs. Then F satisfies X → Y iff for all relations r over U we have:
 \[r = \pi_{X \cup Y}(r) \Join \pi_{X \cup (U \setminus Y)}(r) \]
- Hence, the recursive decomposition algorithm for BCNF decomposition works here
 - Decompose(X \cup Y) \Join Decompose(X \cup (U \setminus Y))
 - A polynomial time is known for special cases
- In particular, there is always a lossless 4NF decomposition
 - What about dependency preserving?
 - Answer: No! Even if there are only FDs (recall BCNF)