Database Management Systems
Course 236363

Lecture 6:
Integrity Constraints

Database Constraints (Dependencies)

• Definition: properties that DB instances should satisfy beyond conforming to the schema structure
• There are various types of constraints, each with its designated
 – Language (how do rules look like?)
 – Semantics (what do rules mean?)
• In this lecture, we will learn constraint languages, discuss their semantics and discuss reasoning over them

Why is it important to model and understand constraints?

• Application coherence/safety
• Efficiency
• Inconsistency management
 • Advanced course 236805
• Principles of schema design
 • Next lecture
Use 1: Constraints for Application Coherence

- The “obvious” application of constraints is software safety: DBMS assures that, whatever app developers/users do, DB always satisfies specified constraints
- Database constraints reduce (but typically not eliminate) responsibility of custom code to verify integrity

Use 2: Constraints for Efficiency

- Knowing that constraints are satisfied can significantly help query planning
- In addition, joins are commonly via keys; so designated structure/indices can be built

Use 3: Constraints for Handling Inconsistency

- An inconsistent database contains inconsistent (or impossible) information
 - Two students have the same ID
 - A student gets credit for the same course twice
 - A student takes a non-existing course
 - A student gets a grade but missing an assignment
- Modeling: \((I, \Sigma)\) where \(I\) is a database instance and \(\Sigma\) is a set of integrity constraints; alas, \(I\) violates \(\Sigma\)
- (Slides from “Uncertainty in Databases,” Advanced Topics 236605)
Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>81</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>80</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>PL</td>
<td>DC</td>
</tr>
<tr>
<td>PL</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Functional Dependency: every student gets a unique grade per course

Integrity Constraints 1

SELECT student FROM Grades G, Courses C WHERE G.grade >= 85 AND G.course = C.course AND C.lecturer = 'Eran'

Ahuva

We can’t always enforce. Why?

Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>PL</td>
<td>DC</td>
</tr>
<tr>
<td>PL</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Functional Dependency: every student gets a unique grade per course

Integrity Constraints 2

SELECT student FROM Grades G, Courses C WHERE G.grade >= 87 AND G.course = C.course AND C.lecturer = 'Eran'

Ahuva

Consistent Query Answering

Grades

<table>
<thead>
<tr>
<th>student</th>
<th>course</th>
<th>grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahuva</td>
<td>PL</td>
<td>90</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>86</td>
</tr>
<tr>
<td>Alon</td>
<td>PL</td>
<td>81</td>
</tr>
</tbody>
</table>

Courses

<table>
<thead>
<tr>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>PL</td>
<td>DC</td>
</tr>
<tr>
<td>PL</td>
<td>Keren</td>
</tr>
</tbody>
</table>

Functional Dependency: every student gets a unique grade per course

Integrity Constraints 2

SELECT student FROM Grades G, Courses C WHERE G.grade >= 80 AND G.course = C.course AND C.lecturer = 'Eran'

Ahuva

Alon
Use 4: Constraints for Schema Design

Interestingly, the motivation to inventing some popular types of constraints was to define what “good schemas” should avoid!

Example of Schema Design

<table>
<thead>
<tr>
<th>Embassy</th>
<th>Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
<td>host</td>
</tr>
<tr>
<td>France</td>
<td>Israel</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
</tr>
</tbody>
</table>

Population repeated for every city! Why is it bad?
• Redundancy – we store more bits than needed
• We can get inconsistencies
• We may not be able to store some information (or be forced to used nulls)

Normal Forms

<table>
<thead>
<tr>
<th>Embassy</th>
<th>In “normal form”?</th>
</tr>
</thead>
<tbody>
<tr>
<td>country</td>
<td>host</td>
</tr>
<tr>
<td>France</td>
<td>Israel</td>
</tr>
<tr>
<td>USA</td>
<td>Israel</td>
</tr>
<tr>
<td>Israel</td>
<td>France</td>
</tr>
<tr>
<td>USA</td>
<td>France</td>
</tr>
</tbody>
</table>

In some “normal form”
Another Bad Schema

<table>
<thead>
<tr>
<th>student</th>
<th>phone</th>
<th>course</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>04-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Alma</td>
<td>052-111-1111</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Eran</td>
</tr>
<tr>
<td>Amir</td>
<td>04-222-2222</td>
<td>PL</td>
<td>Keren</td>
</tr>
<tr>
<td>Ahuva</td>
<td>04-333-3333</td>
<td>AL</td>
<td>Shaul</td>
</tr>
<tr>
<td>Ahuva</td>
<td>054-333-3333</td>
<td>AL</td>
<td>Shaul</td>
</tr>
</tbody>
</table>

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies

Functional Dependencies (FDs)

- Functional Dependency is the most studied type of database constraint
- Most famous special case: keys
 - SQL distinguishes between two types of key constraints: primary key (≤1 allowed), and uniqueness (as many as you want)
 - A primary key cannot be NULL, and it typically has a more efficient index (determines tuple physical sorting)
Example: Smartphone Store

<table>
<thead>
<tr>
<th>name</th>
<th>os</th>
<th>disk</th>
<th>price</th>
<th>vendor</th>
<th>headq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>32</td>
<td>550</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy S6</td>
<td>Android</td>
<td>64</td>
<td>700</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>Galaxy Note 5</td>
<td>Android</td>
<td>32</td>
<td>630</td>
<td>Samsung</td>
<td>Suwon, South Korea</td>
</tr>
<tr>
<td>iPhone 6</td>
<td>iOS</td>
<td>16</td>
<td>595</td>
<td>Apple</td>
<td>Cupertino, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>32</td>
<td>635</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
<tr>
<td>Nexus 6p</td>
<td>Android</td>
<td>128</td>
<td>900</td>
<td>Google</td>
<td>MV, CA, USA</td>
</tr>
</tbody>
</table>

The attribute set **name** determines the attribute **price**

The attribute set **os** determines the attribute **vendor**

The attribute set **disk** determines the attribute **headq**

Example: US Addresses

<table>
<thead>
<tr>
<th>name</th>
<th>state</th>
<th>city</th>
<th>street</th>
<th>zip</th>
</tr>
</thead>
<tbody>
<tr>
<td>White House</td>
<td>DC</td>
<td>Washington</td>
<td>1600 Pennsylvania Ave NW</td>
<td>20500</td>
</tr>
<tr>
<td>Wall Street</td>
<td>NY</td>
<td>New York</td>
<td>11 Wall St.</td>
<td>10005</td>
</tr>
<tr>
<td>Empire State B.</td>
<td>NY</td>
<td>New York</td>
<td>350 Fifth Avenue</td>
<td>10118</td>
</tr>
<tr>
<td>Hollywood Sign</td>
<td>CA</td>
<td>Los Angeles</td>
<td>4059 Mt Lee Dr.</td>
<td>90046</td>
</tr>
</tbody>
</table>

The attribute set **state** determines the attribute **zip**

The attribute set **city** determines the attribute **street**

The attribute set **zip** determines the attribute **state**

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies
Notation

• In the case of FDs, we consider a single relation schema.
• We write an attribute set as a sequence of attribute names (not set notation {...}).
 – Name, os, disk, price
• An attribute set is denoted by a capital letter from the end of the Latin alphabet.
 – X, Y, Z
• Concatenation stands for union.
 – XY stands for X U Y
 – XX = X
 – XY = YX = YXX

Functional Dependency

• From now on, we will assume the schema s without mentioning it explicitly.
• A Functional Dependency (FD) is an expression X –> Y where X and Y are sets of attributes.
 – Examples:
 • name, disk –> price, os, vendor
 • name –> os, vendor
 • country, city, street –> zip
 • zip –> country

Semantics of an FD

• A relation R satisfies the FD X –> Y if:
 for all tuples t and u in R, if t and u agree on X then they also agree on Y.
• Mathematically:
 t[X] = u[X] => t[Y] = u[Y]
• A relation R satisfies a set F of FDs if R satisfies every FD in F.
Trivial FDs

- An FD over is *trivial* if it holds in every relation (over the underlying schema)
- \textbf{Proposition:} An FD $X \rightarrow Y$ is trivial if and only if $Y \subseteq X$
 - Proof:
 - The "if" direction is straightforward
 - For the "only if" direction, consider the instance I that contains two tuples that agree precisely on the attributes of X; if $y \notin X$ then we get a violation of $X \rightarrow Y$.

Can you express an FD stating that a column must contain a constant value (same across all tuples)?

<table>
<thead>
<tr>
<th>Faculty</th>
<th>course</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>AI</td>
</tr>
<tr>
<td>CS</td>
<td>DB</td>
</tr>
<tr>
<td>CS</td>
<td>PL</td>
</tr>
<tr>
<td>CS</td>
<td>OS</td>
</tr>
</tbody>
</table>

Problem: No Unique Representation...

<table>
<thead>
<tr>
<th>Faculty</th>
<th>symbol</th>
<th>name</th>
<th>dean</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>Computer Science</td>
<td>Irad Yavneh</td>
<td></td>
</tr>
<tr>
<td>EE</td>
<td>Electrical Engineering</td>
<td>Ariel Onda</td>
<td></td>
</tr>
<tr>
<td>IE</td>
<td>Industrial Engineering</td>
<td>Anshai Mandelbaum</td>
<td></td>
</tr>
</tbody>
</table>

- $F_1 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}\}$
- $F_2 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{dean}, \text{dean} \rightarrow \text{symbol}\}$
- $F_3 = \{\text{symbol} \rightarrow \text{name}, \text{name} \rightarrow \text{symbol}, \text{dean} \rightarrow \text{symbol}, \text{symbol} \rightarrow \text{dean}\}$

They all mean precisely the same thing!
Entailed (Implied) FDs

- Let F be a set of FDs
- An FD $X \rightarrow Y$ is entailed (or implied) by F if for every relation R over the schema, if R satisfies F then R satisfies $X \rightarrow Y$
- Notation: $F \models X \rightarrow Y$

Examples of Entailment

- $F = \{\text{name} \rightarrow \text{vendor}, \text{vendor} \rightarrow \text{headq}\}$
 - $F \models \text{name} \rightarrow \text{headq}$
 - $F \models \text{name}, \text{vendor} \rightarrow \text{headq}$
 - $F \models \text{name}, \text{vendor} \rightarrow \text{vendor}$
- $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow A\}$
 - $F \models A \rightarrow A$
 - $F \models A \rightarrow B$
 - $F \models A \rightarrow C$
 - $F \models A \rightarrow ABC$

Closure of an FD Set

- Let F be a set of FDs
- The closure of F, denoted F^*, is the set of all the FDs entailed by F
- $F^* = \{X \rightarrow Y \mid F \models X \rightarrow Y\}$
- Observations:
 - $F \subseteq F^*$
 - $(F^*)^* = F^*$
 - F^* contains every trivial FD
Closure of an Attribute Set

• Let F be a set of FDs, and let X be a set of attributes.
• The closure of X under F, denoted X^+, is the set of all the attributes A such that $X \rightarrow A$ is implied by F.
 – Note: notation assumes that F is known from the context.

Observations

• For all F, X, Y:
 – $X^+ = \{A \mid F \models X \rightarrow A\} = \{A \mid (X \rightarrow A) \in F^+\}$
 – $X \subseteq X^+$
 – $(X^*)^+ = X^+$
 – If $X \subseteq Y$ then $X^* \subseteq Y^*$

Minimal Cover

• Let F be a set of FDs.
• A minimal cover (or minimal basis) for F is a set G of FDs with the following properties:
 – $G^* = F^*$
 – FDs in G have a single attribute on the right hand side; that is, they have the form $X \rightarrow A$.
 – All FDs are required: no FD $X \rightarrow A$ in G is such that $G \setminus \{X \rightarrow A\} \models X \rightarrow A$.
 – All attributes are required: no FD $X_B \rightarrow A$ in G is such that $G \models X \rightarrow A$.

Example of Minimal Covers

\{A\rightarrow BC, B\rightarrow AC, C\rightarrow AB, AB\rightarrow C, AC\rightarrow B\}

- Minimal cover 1:
 \{A\rightarrow B, B\rightarrow C, C\rightarrow A\}
- Minimal cover 2:
 \{C\rightarrow B, B\rightarrow A, A\rightarrow C\}
- Minimal cover 3:
 \{A\rightarrow B, B\rightarrow A, A\rightarrow C, C\rightarrow A\}
- Any more?
- In what sense is a minimal cover “minimal”?

Keys and Superkeys

- Assume \(s \) is our underlying relation schema
- A superkey is a set \(X \) of attributes such that \(X^+ \) contains every attribute in \(s \)
- A key is a superkey \(X \) that does not contain any other superkey
 - That is, if \(Y \subseteq X \) then \(Y \) is not a superkey
- Later, we will see an efficient algorithm for finding a key

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies
Mechanically Proving FD Entailment

• Conceptually, to prove \(F \models X \rightarrow Y \) we need to consider every possible relation that satisfies \(F \), and check whether \(X \rightarrow Y \) holds
• But so far, for each such proof we have found a finite argument
• Can we detect entailment algorithmically?
• Yes! Using a proof system
 – Later, we will see an efficient (not just computable) proof procedure

Example

- \(R(A,B,C,D,E,F) \quad \{A \rightarrow BC, CD \rightarrow EF\} \)
- Prove that \(AD \rightarrow F \) holds

- \(A \rightarrow BC \) implies \(A \rightarrow C \)
- \(A \rightarrow C \) implies that \(AD \rightarrow CD \)
- \(AD \rightarrow CD \) and \(CD \rightarrow EF \) imply \(AD \rightarrow EF \)
- \(AD \rightarrow EF \) implies \(AD \rightarrow E \)

Proof System

- A proof system is a collection of rules/patterns of the form “if you know \(x \) then infer \(y \)”
- A proof of a statement \(\text{stmt} \) is:
 – A sequence of rule applications over the facts inferred so far
 • Each application infers new facts
 – starting with what is known
 – ending with \(\text{stmt} \)
- A proof system is:
 – Sound if every provable fact is correct
 – Complete if every correct fact is provable
Proof System for FDs

• Think of proof systems for inferring FDs from a known set of FDs... (“if you know some FDs, then you can infer a new FD”)
 – Can you give an easy example of a sound (not necessarily complete) proof system?
 – Can you give an easy example of a complete (not necessarily sound) proof system?

Armstrong’s Axioms

| Reflexivity: If \(Y \subseteq X \) then \(X \rightarrow Y \) |
| Augmentation: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \) |
| Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \) |

Example Revisited

| Reflexivity: If \(Y \subseteq X \) then \(X \rightarrow Y \) |
| Augmentation: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \) |
| Transitivity: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \) |

\(R(A,B,C,D,E,F) \) (\(A \rightarrow BC \), \(CD \rightarrow EF \)): prove \(AD \rightarrow F \)

– \(A \rightarrow BC \) implies \(A \rightarrow C \)
 • Reflexivity, Transitivity
– \(A \rightarrow C \) implies that \(AD \rightarrow CD \)
 • Augmentation
– \(AD \rightarrow CD \) and \(CD \rightarrow EF \) imply \(AD \rightarrow EF \)
 • Transitivity
– \(AD \rightarrow EF \) implies \(AD \rightarrow E \)
 • Reflexivity, Transitivity
Provable Rules

Armstrong’s Axioms

- **Reflexivity**: If \(Y \subseteq X \) then \(X \rightarrow Y \)
- **Augmentation**: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \)
- **Transitivity**: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

- **Union**: If \(X \rightarrow Y \) and \(X \rightarrow Z \) then \(X \rightarrow YZ \)
 - \(X \rightarrow Y \) implies \(XZ \rightarrow YZ \) (augmentation)
 - \(X \rightarrow Z \) implies \(X \rightarrow XZ \) (augmentation), same as \(X \rightarrow XZ \)
 - \(X \rightarrow XZ \) and \(XZ \rightarrow YZ \) implies \(X \rightarrow YZ \) (transitivity)

- **Decomposition**: If \(X \rightarrow YZ \) then \(X \rightarrow Y \)
 - Reflexivity & transitivity

Entailment vs. Provable

- **Recall**: \(F \models X \rightarrow Y \) denotes that \(X \rightarrow Y \) is **entailed** from \(F \)
 - Whenever \(F \) holds, so does \(X \rightarrow Y \)
- **By** \(F \vdash X \rightarrow Y \) we denote that \(X \rightarrow Y \) is **provable** from \(F \) using Armstrong’s axioms
 - There is proof starting w/ \(F \) ending w/ \(X \rightarrow Y \)
- **Example**: \(F = \{ A \rightarrow B, BC \rightarrow D \} \)
 - Clearly, \(F \models AC \rightarrow D \) is true
 - But is \(F \vdash AC \rightarrow D \) true?
 - If so, a proof is required

Soundness and Completeness

- **Reflexivity**: If \(Y \subseteq X \) then \(X \rightarrow Y \)
- **Augmentation**: If \(X \rightarrow Y \) then \(XZ \rightarrow YZ \)
- **Transitivity**: If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)

THEOREM: Armstrong’s axioms form a sound and complete proof system for FDs

- That is, every **provable** FD is **correct**, and every **correct** FD is **provable**
- That is, for all \(F, X, Y \) we have
 \[
 F \models X \rightarrow Y \iff F \vdash X \rightarrow Y
 \]
- Hence, Armstrong’s axioms fully capture the implication dependencies among FDs
Proof

- We need to prove two things:
 1. Soundness
 2. Completeness

- Proving soundness is straightforward: the axioms are correct, so derived facts are correct, ...so end conclusions are correct
 - For complete formality, use induction
- Proving completeness is more involved

Proof of Completeness (1)

- We assume that $F \vDash X \rightarrow Y$
- We need to prove that $F \vdash X \rightarrow Y$

 Proof:
 - Denote by X^* the set $\{A \mid F \vdash X \rightarrow A\}$
 - We will show that $Y \subseteq X^*$
 - Why is it enough? Since then $X \rightarrow Y$ is proved by repeatedly using union
 - Recall – we showed that union is provable
 - ... and we are done

Proof of Completeness (2)

- We assume that $F \vDash X \rightarrow Y$
- We need to prove that $Y \subseteq X^*$
- Suppose, by way of contradiction, that $Y \not\subseteq X^*$
- Assuming $Y \not\subseteq X^*$, we construct a relation R s.t.:
 - R violates $X \rightarrow Y$ (Claim 1, Claim 2)
 - $R \not\vdash F$ (Claim 3)
 - This contradicts $F \vDash X \rightarrow Y$
- Conclusion $Y \subseteq X^*$
Proof of Completeness (3)

- **Construction:**
 - Let X' be the set of attributes that are not in X^*
 - Observe that $Y \cap X' \neq \emptyset$ (our assumption)
 - Construct a relation R with two tuples t and u:
 - $t[X'] = u[X'] = (0, 0, 0, 1, 1, 1, 1)$
 - $t[X'] = (1, 1, 1, 1, 1, 1, 1)$
 - $u[X'] = (2, 2, 2, 2, 2, 2, 2)$

Proof of Completeness (4)

- **CLAIM 1:** $X \subseteq X^*$
 - Proof: apply *reflexivity* to each $A \in X$

Proof of Completeness (5)

- **CLAIM 2:** R violates $X \rightarrow Y$
 - Proof:
 - t and u agree on X, due to CLAIM 1
 - t and u disagree on Y, since $Y \cap X' \neq \emptyset$
Proof of Completeness (6)

- **Claim 3:** \(R \) satisfies \(F \)

 - Proof:
 1. Let \(Z \rightarrow W \) be an FD in \(F \); we need to prove that \(R \) satisfies \(Z \rightarrow W \)
 2. If \(Z \subseteq X^* \) then \(u \) and \(t \) disagree on \(Z \), and we are done; so suppose that \(Z \nsubseteq X^* \)
 3. Then \(F \vdash X \rightarrow Z \) (union), hence \(F \vdash X \rightarrow W \) (transitivity), hence \(F \vdash X \rightarrow A \) for every \(A \in W \) (decomposition)
 4. We conclude that \(W \subseteq X^* \)
 5. Hence, \(u \) and \(t \) agree on \(W \), and \(R \) satisfies \(Z \rightarrow W \)

Some observations

- The closure \(F^* \) of \(F \) is the set of all the FDs entailed by \(F \)
- The closure \(F^* \) of \(F \) is the set of all the FDs provable from \(F \)
- Notation:
 1. \(X^* = \{ A \mid F \models X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^* \} \)
 2. \(X^+ = \{ A \mid F \vdash X \rightarrow A \} = \{ A \mid (X \rightarrow A) \in F^* \} \)
- Simple claim: \(Y \subseteq X^* \) iff \(F \vdash X \rightarrow Y \)

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies
Computational Problems

Closure Computation
Given:
- A set F of FDs
- A set X of attributes
Goal: Compute X+

Entailment Testing
Given:
- A set F of FDs
- An FD X → Y
Goal: Determine whether F ⊨ X → Y

Key Generation
Given:
- A set F of FDs
Goal: Find a key

Equivalence Testing
Given:
- Two sets F and G of FDs
Goal: Determine whether F= rename G

Recall: we always assume an underlying relation schema!

Computing the Closure of an Attribute Set

Closure(X,F) {
 V := X
 while(V changes) {
 for all (Y → Z in F) {
 if (Y ⊆ V) {
 V := V ∪ Z
 }
 }
 return V
 }
}

Example:
F = {AB → C, A → B, BC → D, CE → F}
X = {A}

Correctness and Running Time

- The proof of correctness is very similar to the proof of soundness & completeness of Armstrong's axioms (omitted)
- Running time:
 - Suppose that F contains n attributes
 - Let m be the total # of attribute occurrences in F
 - With reasonable data structures, O(nm) time
 - Can be improved to run in time O(|X|+m)
- [Beeri & Bernstein, 1979]
Implication Testing

Given: A set F of FDs
An FD $X \rightarrow Y$

Goal: Determine whether $F \models X \rightarrow Y$

$\text{IsImplied}(X,Y,F)\{$
 \text{ if } (Y \subseteq \text{Closure}(X,F)) \text{ return true}
 \text{ else return false}
$\}$

Equivalence Testing

Given: F and G of FDs

Goal: Determine whether $F \equiv G$

$\text{IsEquiv}(F,G)\{$
 \text{ for all } X \rightarrow Y \text{ in } F
 \text{ if } (!\text{IsImplied}(X,Y,G)) \text{ return false}
 \text{ for all } X \rightarrow Y \text{ in } G
 \text{ if } (!\text{IsImplied}(X,Y,F)) \text{ return false}
 \text{ return true}
$\}$

Key Generation

Given: A set of FDs F

Goal: Find a key

$\text{FindKey}(F,R(A_1,...,A_n))\{$
 $K = \{A_1,...,A_n\}$
 \text{ for } (i=1,...,n) \{$
 \text{ if } (A_i \in \text{Closure}(K \setminus \{A_i\}, F))$
 \text{ $K := K \setminus \{A_i\}$}
 \}$
 \text{ return } K$
$\}$

Example:
$$\begin{array}{c|c|c|c}
 A & B & C \\
 \hline
 \text{F} & \text{R} & \text{IL} \\
 \hline
 A & B & C \\
 B & C & B \\
 B & C & C \\
 B & C & B \\
 B & C & C \\
 \hline
 (B)
\end{array}$$
Proof of Correctness (1)

- **Claim 1**: Throughout the execution, \(K \) is always a superkey
 - Proof: Induction on iteration
 - Induction hypothesis: at start of iteration \(i \), \(K^* = \{A_1, \ldots, A_n\} \)
 - Basis (\(i = 1 \)): Initial \(K \) contains all attributes
 - Inductive step: If \(A \in (K \setminus \{A_i\})^* \) then
 \[K \subseteq (K \setminus \{A_i\})^* \]
 and then
 \[\{A_j, \ldots, A_n\} = K^* \subseteq ((K \setminus \{A_i\})^* = (K \setminus \{A_i\})^* \]

Proof of Correctness (2)

- Let \(Q \) be the returned \(K \)
- **Claim 2**: \(Q \) is minimal
 - Proof: by way of contradiction
 - Suppose \(Q' \subseteq Q \) is a superkey, and let \(A \in Q \setminus Q' \)
 - Then \(Q(A) \) is a superkey (why?)
 - In the \(i \)'th iteration of handling \(A \), we have \(Q \subseteq K \) (since we only delete from \(K \)), so \(Q(A) \subseteq K(A) \)
 - But then, \(Q(A) \) is a superkey, and so \(K(A) \) is a superkey, and in particular \(A \in (K(A))^* \)
 - So \(A \) should have been removed!

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies
Optional Material

The rest of the presentation is not in the official course material.

Additional Types of Constraints

- So far we have been looking at functional dependencies, and the special cases of superkeys and keys
- Next, we consider two additional types:
 - Multivalued Dependency (MVD)
 - Inclusion Dependency (IND)

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies
Example of Multivalued Dependency

<table>
<thead>
<tr>
<th>Student</th>
<th>Faculty</th>
<th>Phone</th>
<th>Course</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL Eran</td>
<td></td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL Keren</td>
<td></td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL Eran</td>
<td></td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL Keren</td>
<td></td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL Eran</td>
<td></td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL Keren</td>
<td></td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI Shaul</td>
<td></td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-3333</td>
<td>AI Shaul</td>
<td></td>
</tr>
</tbody>
</table>

Why is this table “badly” designed?

Are there any FDs?

student→faculty student→phone student→course

Multivalued Dependency

- Let s be a relation schema
- A multivalued dependency (MVD) has the form $X \rightarrow Y$ where X and Y are disjoint sets of attributes
- A relation R satisfies $X \rightarrow Y$ if
 - Informally: for every two tuples that agree on X, swapping their Y component doesn’t change R.
 - For every tuples t_1 and t_2 with $t_1[X] = t_2[X]$ there exists a tuple t_3 with
 - $t_3[X] = t_1[X] = t_2[X]
 - $t_3[s \setminus (XY)] = t_1[s \setminus (XY)]$
 - $t_3[Y] = t_2[Y]

Any Other MVDs?

<table>
<thead>
<tr>
<th>Student</th>
<th>Faculty</th>
<th>Phone</th>
<th>Course</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL Eran</td>
<td></td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>04-111-1111</td>
<td>PL Keren</td>
<td></td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL Eran</td>
<td></td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>052-111-1111</td>
<td>PL Keren</td>
<td></td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL Eran</td>
<td></td>
</tr>
<tr>
<td>Amir</td>
<td>IE</td>
<td>04-222-2222</td>
<td>PL Keren</td>
<td></td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>04-333-3333</td>
<td>AI Shaul</td>
<td></td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>054-333-3333</td>
<td>AI Shaul</td>
<td></td>
</tr>
</tbody>
</table>

student→phone student→course
Some Properties (Exercise / Assignment)

- Every FD is an MVD
- If $X \rightarrow Y$ then $X \rightarrow s \setminus (XY)$
- An MVD $X \rightarrow Y$ is trivial (always holds) if and only if $Y = \emptyset$ or $Y = s \setminus X$
- If X, Y, Z are pairwise disjoint, then $X \rightarrow Y$ and $Y \rightarrow Z$ imply $X \rightarrow Z$

Outline

- Introduction
- Functional Dependencies
 - Definitions
 - Armstrong’s Axioms
 - Algorithms
- Other Types of Constraints
 - Multivalued Dependencies
 - Inclusion Dependencies

Example of Inclusion Dependencies

<table>
<thead>
<tr>
<th>Student</th>
<th>Posting</th>
<th>Likes</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>faculty</td>
<td>id</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
<td>23</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
<td>45</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
<td>79</td>
</tr>
</tbody>
</table>

Likes[student] \subseteq Student[name]
Likes[posting] \subseteq Posting[id]
Posting[owner] \subseteq Student[name]

<table>
<thead>
<tr>
<th>Grad</th>
<th>StudentGrant</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>faculty</td>
</tr>
<tr>
<td>Alma</td>
<td>CS</td>
</tr>
<tr>
<td>Amir</td>
<td>CS</td>
</tr>
<tr>
<td>Ahuva</td>
<td>EE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>name</th>
<th>faculty</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anna</td>
<td>Amir</td>
<td>1000</td>
</tr>
<tr>
<td>Ahmed</td>
<td>Ahuva</td>
<td>1500</td>
</tr>
</tbody>
</table>

StudentGrant[prof,student] \subseteq Grad[advisor,name]

A prof. receives a grant for a student only if she advises that student.
Definition of an Inclusion Constraint

- Let \(S \) be a relational schema.
 - Recall: \(S \) consists of several relation schemas
- An Inclusion Dependency (IND) has the following form \(R[A_1, \ldots, A_m] \subseteq S[B_1, \ldots, B_m] \)
 - \(R \) and \(S \) are relation names in \(S \)
 - \(A_1, \ldots, A_m \) are distinct attributes of \(R \)
 - \(B_1, \ldots, B_m \) are distinct attributes of \(S \)
- Semantics: \(\pi_{A_1, \ldots, A_m}(R) \subseteq \pi_{B_1, \ldots, B_m}(S) \)

Examples

- What is the meaning of the following IND?
 \(\text{Grad}[\text{name}] \subseteq \text{StudentGrant}[\text{student}] \)
- What does the following mean about the binary relation \(R(A,B) \):
 \(R[A,B] \subseteq R[B,A] \)

Sound and Complete System for INDs

- Like FDs, INDs have a simple sound and complete proof system (proof not covered):
 - Reflexivity: \(R[X] \subseteq R[X] \)
 - Projection: If \(R[A_1, \ldots, A_m] \subseteq S[B_1, \ldots, B_n] \) then for every sequence \(i_1, \ldots, i_k \) of distinct indices in \(\{1, \ldots, m\} \) we have \(R[A_{i_1}, \ldots, A_{i_k}] \subseteq S[B_{i_1}, \ldots, B_{i_k}] \)
 - Transitivity: If \(R[X] \subseteq S[Y] \) and \(S[Y] \subseteq T[Z] \) then \(R[X] \subseteq T[Z] \)