Database Management Systems
Course 236363
Lecture 10: NoSQL Databases

Outline

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
 - Example: Redis
- Document Stores
 - Example: MongoDB
- Graph Databases
 - Example: neo4j
- Concluding Remarks

SQL Means More than SQL

- SQL stands for the query language
- But commonly refers to the traditional RDBMS:
 - Relational storage of data
 - Each tuple is stored consecutively
 - Joins as first-class citizens
 - In fact, normal forms prefer joins to maintenance
 - Strong guarantees on transaction management
 - No consistency worries when many transactions operate simultaneously on common data
- Focus on scaling up
 - That is, make a single machine do more, faster
Trends Drive Common Requirements

Social media + mobile computing
- Explosion in data, always available, constantly read and updated
- High load of simple requests of a common nature
- Some consistency can be compromised (e.g., 👍

Cloud computing + open source
- Affordable resources for management / analysis of data
- People of various skills / budgets need software solutions for distributed analysis of massive data

Database solutions need to scale out (utilize distribution, "scale horizontally")

Compromises Required

What should be done to allow for effective distributed, data intensive applications?
1. Use data models and storage that allow to avoid joins of big objects
2. Relax the guarantees on consistency

NoSQL

- Not Only SQL
 - Not the other thing!
 - Term introduced by Carlo Strozzi in 1998 to describe an alternative database model
 - Became the name of a movement following Eric Evans’s reuse for a distributed-database event
- Seminal papers:
 - Google’s BigTable
 - Amazon’s DynamoDB
 - DeCandia, Hastorun, Jampani, Kakulapati, Lakshman, Pilchin, Sivasubramanian, Vosshall, Vogels: Dynamo: Amazon’s highly available key-value store. SOSP 2007: 205-220
NoSQL from nosql-database.org

```
• Next Generation Databases mostly addressing some of the points: being non-relational, distributed, open-source and horizontally scalable.
• The original intention has been modern web-scale databases. The movement began early 2009 and is growing rapidly. Often more characteristics apply such as: schema-free, easy replication support, simple API, eventually consistent / BASE (not ACID), a huge amount of data and more.
• So the misleading term "nosql" (the community now translates it mostly with "not only sql") should be seen as an alias to something like the definition above.
```

Common NoSQL Features

• Non-relational data models
• Flexible structure
 – No need to fix a schema, attributes can be added and replaced on the fly
• Massive read/write performance; availability via horizontal scaling
 – Replication and sharding (data partitioning)
 – Potentially thousands of machines worldwide
• Open source (very often)
• APIs to impose locality

Database Replication

• Data replication: storing the same data on several machines (“nodes”)
• Useful for:
 – Availability (parallel requests are made against replicas)
 – Reliability (data can survive hardware failures)
 – Fault tolerance (systems stays alive when nodes/network fail)
• Typical architecture: master-slave

Replication example in MySQL (dev.mysql.com)
Database Sharding

- Simply partitioning data across multiple nodes
- Useful for
 - Scaling (more data)
 - Availability

![Replication + sharding example in MongoDB](mongodb-documentation.readthedocs.org)

Open Source

- Free software, source provided
 - Users have the right to use, modify and distribute the software
 - But restrictions may still apply, e.g., adaptations need to be open-source
- Idea: community development
 - Developers fix bugs, add features, ...
- **How can that work?**
- A major driver of open-source is Apache

Apache Software Foundation

- Non-profit organization
- Hosts communities of developers
 - Individuals and small/large companies
- Produces open-source software
- Funding from grants and contributions
- Hosts very significant projects
 - Apache Web Server, Hadoop, Zookeeper, Cassandra, Lucene, OpenOffice, Struts, Tomcat, Subversion, Tcl, UIMA, ...
We Will Look at 4 Data Models

- Key/Value Store
- Column-Family Store
- Document Store
- Graph Databases

Highlighted Database Features

- **Data model**
 - What data is being stored?
- **CRUD interface**
 - API for Create, Read, Update, Delete
 - Sometimes preceding S for Search
- **Transaction consistency guarantees**
- **Replication and sharding model**
 - What’s automated and what’s manual?

True and False Conceptions

- **True:**
 - SQL does not effectively handle common Web needs of massive (datacenter) data
 - SQL has guarantees that can sometimes be compromised for the sake of scaling
 - Joins are not for free, sometimes undoable
- **False:**
 - NoSQL says NO to SQL
 - Nowadays NoSQL is the only way to go
 - Joins can always be avoided by structure redesign
Outline

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
 - Example: Redis
- Document Stores
 - Example: MongoDB
- Graph Databases
 - Example: neo4j
- Concluding Remarks

Transaction

- A sequence of operations (over data) viewed as a single higher-level operation
 - Transfer money from account 1 to account 2
- DBMSs execute transactions in parallel
 - No problem applying two “disjoint” transactions
 - But what if there are dependencies?
- Transactions can either commit (succeed) or abort (fail)
 - Failure due to violation of program logic, network failures, credit-card rejection, etc.
- DBMS should not expect transactions to succeed

Examples of Transactions

- Airline ticketing
 - Verify that the seat is vacant, with the price quoted, then charge credit card, then reserve
- Online purchasing
 - Similar
- “Transactional file systems” (MS NTFS)
 - Moving a file from one directory to another: verify file exists, copy, delete
- Textbook example: bank money transfer
 - Read from acct#1, verify funds, update acct#1, update acct#2
Transfer Example

<table>
<thead>
<tr>
<th>txn 1</th>
<th>txn 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>Begin</td>
</tr>
<tr>
<td>Read(A,v)</td>
<td>Read(A,x)</td>
</tr>
<tr>
<td>v = v - 100</td>
<td>x = x - 100</td>
</tr>
<tr>
<td>Write(A,v)</td>
<td>Write(A,x)</td>
</tr>
<tr>
<td>Read(B,w)</td>
<td>Read(B, w)</td>
</tr>
<tr>
<td>w = w + 100</td>
<td>y = y + 100</td>
</tr>
<tr>
<td>Write(B,w)</td>
<td>Write(B, y)</td>
</tr>
<tr>
<td>Write(B,w)</td>
<td>Write(C,y)</td>
</tr>
<tr>
<td>Commit</td>
<td>Commit</td>
</tr>
</tbody>
</table>

• Scheduling is the operation of interleaving transactions
• Why is it good?
• A serial scheduling executes transactions one at a time, from beginning to end
• A good (“serializable”) scheduling is one that behaves like some serial scheduling (typically by locking protocols)

Scheduling Example

<table>
<thead>
<tr>
<th>txn 1</th>
<th>txn 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>Begin</td>
</tr>
<tr>
<td>Read(A,v)</td>
<td>Read(A,x)</td>
</tr>
<tr>
<td>v = v - 100</td>
<td>x = x - 100</td>
</tr>
<tr>
<td>Write(A,v)</td>
<td>Write(A,x)</td>
</tr>
<tr>
<td>Read(B,w)</td>
<td>Read(B, w)</td>
</tr>
<tr>
<td>w = w + 100</td>
<td>y = y + 100</td>
</tr>
<tr>
<td>Write(B,w)</td>
<td>Write(B, y)</td>
</tr>
<tr>
<td>Write(B,w)</td>
<td>Write(C,y)</td>
</tr>
<tr>
<td>Commit</td>
<td>Commit</td>
</tr>
</tbody>
</table>

ACID

• Atomicity
 – Either all operations applied or none are (hence, we need not worry about the effect of incomplete/failed transactions)
• Consistency
 – Each transaction can start with a consistent database and is required to leave the database consistent
• Isolation
 – The effect of a transaction should be as if it is the only transaction in execution (in particular, changes made by other transactions are not visible until committed)
• Durability
 – Once the system informs a transaction success, the effect should hold even if the database crashes (before making all changes to disk)
ACID May Be Overly Expensive

- In quite a few modern applications:
 - ACID contrasts with key desiderata: high volume, high availability
 - We can live with some errors, to some extent
 - Or more accurately, we prefer to suffer errors than to be significantly less functional
- Can this point be made more “formal”?

Simple Model of a Distributed Service

- Context: distributed service
 - e.g., social network
- Clients make get / set requests
 - e.g., setLike(user,post), getLikes(post)
 - Each client can talk to any server
- Servers return responses
 - e.g., ack, [user1,...,userk]
- Failure: the network may occasionally disconnect due to failures (e.g., switch down)
- Desiderata: Consistency, Availability, Partition tolerance

CAP Service Properties

- Consistency: every read (to any node) gets a response that reflects the most recent version of the data
 - More accurately, a transaction should behave as if it changes the entire state correctly in an instant
 - Idea similar to serializability
- Availability: every request (to a living node) gets an answer: set succeeds, get returns a value
- Partition tolerance: service continues to function on network failures
 - As long as clients can reach servers
The CAP Theorem

Eric Brewer’s CAP Theorem:

A distributed service can support at most two out of C, A and P

Historical Note

- Brewer presented it as the CAP principle in a 1999 article
 - Then as an informal conjecture in his keynote at the PODC 2000 conference
- In 2002 a formal proof was given by Gilbert and Lynch, making CAP a theorem
 - [Seth Gilbert, Nancy A. Lynch: Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services. SIGACT News 33(2): 51-59 (2002)]
The BASE Model

- Applies to distributed systems of type AP
- **Basic Availability**
 - Provide high availability through distribution
- **Soft state**
 - Inconsistency (stale answers) allowed
- **Eventual consistency**
 - If updates stop, then after some time consistency will be achieved
 - Achieved by protocols to propagate updates and verify correctness of propagation (gossip protocols)
- **Philosophy**: best effort, optimistic, staleness and approximation allowed

More in Relevant CS Courses

- 236351
 - Distributed Systems
- 234322
 - Information Storage Systems
Outline

• Introduction
• Transaction Consistency
• Column-Family Stores
 • Key-Value Stores
 • Example: Redis
 • Document Stores
 • Example: MongoDB
 • Graph Databases
 • Example: neo4j
• Concluding Remarks

2 Types of Column Store

(Cassandra model)

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>address</th>
<th>year</th>
<th>faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>861</td>
<td>Alma</td>
<td>Haifa</td>
<td>2</td>
<td>NULL</td>
</tr>
<tr>
<td>753</td>
<td>Amir</td>
<td>Jaffa</td>
<td>NULL</td>
<td>CS</td>
</tr>
<tr>
<td>955</td>
<td>Ahuva</td>
<td>NULL</td>
<td>2</td>
<td>IE</td>
</tr>
</tbody>
</table>

Standard RDB

<table>
<thead>
<tr>
<th>id</th>
<th>name</th>
<th>address</th>
<th>year</th>
<th>faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alma</td>
<td>Haifa</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Amir</td>
<td>Jaffa</td>
<td>NULL</td>
<td>CS</td>
</tr>
<tr>
<td>3</td>
<td>Ahuva</td>
<td>NULL</td>
<td>2</td>
<td>IE</td>
</tr>
</tbody>
</table>

Column Store: each column stored separately (diff 1:2:1) Why? Efficiency (fetch only required columns), compression, sparse data for free

Column Stores

• The two often mixed as “column store” → confusion
 – See Daniel Abadi’s blog
• Common idea: don’t keep a row in a consecutive block, split via projection
 – Column store: each column is independent; column-family store: each column family is independent
• Both provide some major efficiency benefits in common read-mainly workloads
 – Given a query, load to memory only the relevant columns
 – Columns can often be highly compressed due to value similarity
 – Effective form for sparse information (no NULLs, no space)
• Column-family store is handled differently from RDBs, often requiring a designated query language
Examples Systems

- Column store (SQL):
 - MonetDB (started 2002, Univ. Amsterdam)
 - VectorWise (spawned from MonetDB)
 - Vertica (M. Stonebraker)
 - SAP Sybase IQ
 - Infobright
- Column-family store (NOSQL):
 - Google’s BigTable (main inspiration to column families)
 - Apache HBase (used by Facebook, LinkedIn, Netflix...)
 - Hypertable
 - Apache Cassandra

Example: Apache Cassandra

- Initially developed by Facebook
 - Open-sourced in 2008
- Used by 1500+ businesses, e.g., Comcast, eBay, GitHub, Hulu, Instagram, Netflix, Best Buy, ...
- Column-family store
 - Supports key-value interface
 - Provides a SQL-like CRUD interface: CQL
- Uses Bloom filters
 - An interesting membership test that can have false positives but never false negatives, well behaves statistically
- BASE consistency model (AP)
 - Gossip protocol (constant communication) to establish consistency
 - Ring-based replication model

Cassandra’s Ring Model

Replication Factor = 3

Advantage: Flexibility / ease of cluster redesign
Outline

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
 - Example: Redis
- Document Stores
 - Example: MongoDB
- Graph Databases
 - Example: neo4j
- Concluding Remarks

Key-Value Stores

- Essentially, big distributed hash maps
- Origin attributed to Dynamo – Amazon’s DB for world-scale catalog/cart collections
 - But Berkeley DB has been here for >20 years
- Store pairs (key, opaque-value)
 - Opaque means that DB does not associate any structure/semantics with the value; oblivious to values
 - This may mean more work for the user: retrieving a large value and parsing to extract an item of interest
- Sharding via partitioning of the key space
 - Hashing, gossip and remapping protocols for load balancing and fault tolerance

Example Databases

- Amazon’s DynamoDB
 - Originally designed for Amazon’s workload at peaks
 - Offered as part of Amazon’s Web services
- Redis
 - Next slides
- Riak
 - Focuses on high availability, BASE
 - “As long as your Riak client can reach one Riak server, it should be able to write data.”
- FoundationDB
 - Focus on transactions, ACID
- Berkeley DB (and Oracle NoSQL Database)
 - First release 1994, by Berkeley, acquired by Oracle
 - ACID, replication
Outline

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
 - Example: Redis
 - Document Stores
 - Example: MongoDB
- Graph Databases
 - Example: neo4j
- Concluding Remarks

Redis

- Basically a data structure for strings, numbers, hashes, lists, sets
- Simplistic “transaction” management
 - Queuing of commands as blocks, really
 - Among ACID, only isolation guaranteed
 - A block of commands that is executed sequentially; no transaction interleaving; no roll back on errors
- In-memory store
 - Persistence by periodical saves to disk
- Comes with
 - A command-line API
 - Clients for different programming languages
 - Perl, PHP, Ruby, Tcl, C, C++, C#, Java, R, …

Example of Redis Commands

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>get x</td>
<td>10</td>
</tr>
<tr>
<td>hget h</td>
<td>y</td>
</tr>
<tr>
<td>keys p</td>
<td>22</td>
</tr>
<tr>
<td>members s</td>
<td>20</td>
</tr>
<tr>
<td>scard s</td>
<td>2</td>
</tr>
<tr>
<td>llen</td>
<td>3</td>
</tr>
<tr>
<td>lrange</td>
<td>1 2</td>
</tr>
<tr>
<td>lindex</td>
<td>2</td>
</tr>
<tr>
<td>lpop</td>
<td>1</td>
</tr>
<tr>
<td>rpop</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Additional Notes

- A key can be any <256MB binary string
 - For example, JPEG image
- Some key operations:
 - List all keys: `keys *`
 - Remove all keys: `flushall`
 - Check if a key exists: `exists k`
- You can configure the persistency model
 - `save m k` means save every `m` seconds if at least `k` keys have changed

Redis Cluster

- Add-on module for managing multi-node applications over Redis
- Master-slave architecture for sharding + replication
 - Multiple masters holding pairwise disjoint sets of keys, every master has a set of slaves for replication and sharding

Outline

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
 - Example: Redis
- Document Stores
 - Example: MongoDB
- Graph Databases
 - Example: neo4j
- Concluding Remarks
Document Stores

- Similar in nature to key-value store, but value is tree structured as a document
- Motivation: avoid joins; ideally, all relevant joins already encapsulated in the document structure
- A document is an atomic object that cannot be split across servers
 - But a document collection will be split
- Moreover, transaction atomicity is typically guaranteed within a single document
- Model generalizes column-family and key-value stores

Example Databases

- **MongoDB**
 - Next slides
- **Apache CouchDB**
 - Emphasizes Web access
- **RethinkDB**
 - Optimized for highly dynamic application data
- **RavenDB**
 - Designed for .NET, ACID
- **Clusterpoint Server**
 - XML and JSON, a combined SQL/JavaScript QL

Outline

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
- Example: Redis
- Document Stores
 - Example: MongoDB
- Graph Databases
 - Example: neo4j
- Concluding Remarks
Open source, 1st release 2009, document store
- Actually, an extended format called BSON (binary JSON) for typing and better compression
- Supports replication (master/slave), sharding
 - Developer provides the “shard key” – collection is partitioned by ranges of values of this key
- Consistency guarantees, CP of CAP
- Used by Adobe (experience tracking), Craigslist, eBay, FIFA (video game), LinkedIn, McAfee
- Provides connector to Hadoop
 - Cloudera provides the MongoDB connector in distributions

MongoDB Data Model
- JavaScript Object Notation (JSON) model
- Database = set of named collections
- Collection = sequence of documents
- Document = \{attribute_1:value_1,...,attribute_k:value_k\}
- Attribute = string (attribute_i ≠ attribute_j)
- Value = primitive value (string, number, date, ...), or a document, or an array
- Array = [value_1,...,value_n]
- Key properties: hierarchical (like XML), no schema
 - Collection docs may have different attributes

Data Example

```json
Collection inventory

{ Item: "ABC2", 
  details: { model: "14Q3", manufacturer: "M1 Corporation" },
  stock: [{ size: "M", qty: 50 }],
  category: "clothing" }

{ Item: "MNO2", 
  details: { model: "14Q3", manufacturer: "ABC Company" },
  category: "clothing"
}
```

`db.inventory.insert`
Example of a Simple Query

```javascript
db.orders.find
({ status: "A" },
{ cust_id: 1, price: 1, _id: 0 })

In SQL it would look like this:
SELECT cust_id, price
FROM orders
WHERE status = "A"
```

Map-Reduce in MongoDB

```javascript
db.orders.aggregate
([
  { cust_id: "abc123", price: 25 },
  { cust_id: "abc124", price: 12 },
  { cust_id: "abc123", price: 20 }
])

In SQL it would look like this:
SELECT cust_id, sum(price)
FROM orders
GROUP BY cust_id;

But orders are distributed all over...

Let's MR it

Collection PurchasesPerCustomer

The Map-Reduce Programming Model

1. Map

2. Reduce
The Map-Reduce Programming Model

1. Map
2. Shuffle
3. Reduce

Map-Reduce in MongoDB

Collection:

```
var emitCustPrice = function() {
 emit(this.cust_id, this.price);
};

var sumUp = function(custId, prices) {
 return Array.sum(prices);
};

db.orders.mapReduce(emitCustPrice, sumUp, {
 out: "PurchasesPerCustomer"
});
```

Sum up the purchases per customer:
**Outline**

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
  - Example: Redis
- Document Stores
  - Example: MongoDB
- Graph Databases
  - Example: neo4j
- Concluding Remarks

**Graph Databases**

- Restricted case of a relational schema:
  - Nodes (+labels/properties)
  - Edges (+labels/properties)
- Motivated by the popularity of network/communication oriented applications
- Efficient support for graph-oriented queries
  - Reachability, graph patterns, path patterns
  - Ordinary RDBs either not support or inefficient for such queries
  - Path of length k is a k-wise self join; yet a very special one...
- Specialized languages for graph queries
  - For example, pattern language for paths
- Plus distributed, 2-of-CAP, etc.
  - Depending on the design choices of the vendor

**Example Databases**

- Graph with nodes/edges marked with labels and properties (labeled property graph)
  - Sparksee (DEX) (Java, 1st release 2008)
  - neo4j (Java, 1st release 2010)
  - InfiniteGraph (Java/C++, 1st release 2010)
  - OrientDB (Java, 1st release 2010)
- Triple stores: Support W3C RDF and SPARQL, also viewed as graph databases
  - MarkLogic, AllegroGraph, Blazegraph, IBM SystemG, Oracle Spatial & Graph, OpenLink Virtuoso, ontotext
**Outline**

- Introduction
- Transaction Consistency
- Column-Family Stores
- Key-Value Stores
  - Example: Redis
- Document Stores
  - Example: MongoDB
- Graph Databases
  - Example: neo4j
- Concluding Remarks

---

**neo4j**

- Open source, written in Java
  - First version released 2010
- Supports the Cypher query language
- Clustering support
  - Replication and sharding through master-slave architectures
- Used by eBay, Walmart, Cisco, National Geographic, TomTom, Lufthansa, ...

---

Examples taken from [Graph Databases](https://graphsdb.com) by Robinson, Webber, and Etham (O’Reilly) - free eBook
The Graph Data Model in Cypher

- **Labeled property graph** model
- **Node**
  - Has a set of *labels* (typically one label)
  - Has a set of *properties* key:value (where value is of a primitive type or an array of primitives)
- **Edge** (relationship)
  - Directed: node ➔ node
  - Has a *name*
  - Has a set of *properties* (like nodes)

---

Example: Cypher Graph for Social Networks

![Social Network Graph](image1)

- User
  - name: Bill
  - follows
  - name: Harry
  - name: Ruth

---

Another Example: Email Exchange

![Email Exchange Graph](image2)

```cypher
CREATE (email_4:Email {id: '4', content: 'email contents'}),
(email_4)-[:TO]->(davina),
(email_4)-[:TO]->(edward);
CREATE (email_5:Email {id: '5'}),
(davina)-[:SENT]->(email_5),
(email_5)-[:TO]->(alice),
(email_5)-[:BCC]->(bob),
(email_5)-[:BCC]->(edward);
```

This leads to the more complex, and interesting, graph we see in Figure 3-10.

![Email Interactions Graph](image3)
Creating Graph Data

```
CREATE (alice:User {username:'Alice'}),
 (bob:User {username:'Bob'}),
 (charlie:User {username:'Charlie'}),
 (davina:User {username:'Davina'}),
 (edward:User {username:'Edward'}),
 (edward)-[:SENT]->(email_5),
 (alice)-[:ALIAS_OF]->(bob)
```

**Query Example**

```
MATCH (email:Email {content:'email contents'}),
 ({username:'Bob'}),
 ({username:'Alice'}),
 ({username:'Davina'}),
 ({username:'Edward'})
RETURN
 MATCH (email)-[:TO]->(edward),
 (email)-[:TO]->(davina),
 (email)-[:BCC]->(bob),
 (email)-[:TO]->(alice),
 (davina)-[:SENT]->(email)
```

Figure 3-8. Missing email node leads to lost information

```
RETURN

1 row
```

This query returns the actions of emailing, copying, and blind-copying are represented by relationships that have been exchanged, but it tells us nothing about the emails themselves:

```
MATCH (email:Email {content:'email contents'}),
 ({username:'Bob'}),
 ({username:'Alice'}),
 ({username:'Davina'}),
 ({username:'Edward'})
RETURN
 MATCH (email)-[:TO]->(edward),
 (email)-[:TO]->(davina),
 (email)-[:BCC]->(bob),
 (email)-[:TO]->(alice),
 (davina)-[:SENT]->(email)
```

This graph structure is lossy, a fact that becomes evident when we pose the following query:

```
MATCH (email:Email {content:'email contents'}),
 ({username:'Bob'}),
 ({username:'Alice'}),
 ({username:'Davina'}),
 ({username:'Edward'})
RETURN
 MATCH (email)-[:TO]->(edward),
 (email)-[:TO]->(davina),
 (email)-[:BCC]->(bob),
 (email)-[:TO]->(alice),
 (davina)-[:SENT]->(email)
```

```
+----------------+
| :EMAILED[1] {} |
| e |
+----------------+
```

This first modeling attempt results in a star-shaped graph with Bob at the center. His extend from Bob to the nodes representing the recipients of his mail. As we see in this graph structure is lossy, a fact that becomes evident when we pose the following query:

```
MATCH (email:Email {content:'email contents'}),
 ({username:'Bob'}),
 ({username:'Alice'}),
 ({username:'Davina'}),
 ({username:'Edward'})
RETURN
 MATCH (email)-[:TO]->(edward),
 (email)-[:TO]->(davina),
 (email)-[:BCC]->(bob),
 (email)-[:TO]->(alice),
 (davina)-[:SENT]->(email)
```

```
+----------------+
| :EMAILED[1] {} |
| e |
+----------------+
```

This tells us that emails likely be one for each email that Bob has sent to Charlie). This tells us that emails ...

Figure 3-10. A graph of email interactions

```
MATCH (email:Email {content:'email contents'}),
 ({username:'Bob'}),
 ({username:'Alice'}),
 ({username:'Davina'}),
 ({username:'Edward'})
RETURN
 MATCH (email)-[:TO]->(edward),
 (email)-[:TO]->(davina),
 (email)-[:BCC]->(bob),
 (email)-[:TO]->(alice),
 (davina)-[:SENT]->(email)
```

```
+----------------+
| :EMAILED[1] {} |
| e |
+----------------+
```

This tells us that emails likely be one for each email that Bob has sent to Charlie). This tells us that emails ...
Another Example

Figure 3-12. Explicitly modeling replies in high fidelity

Here we capture each matched path, binding it to the identifier `p`. In the `RETURN` clause we then calculate the length of the reply-to chain (subtracting 1 for the `SENT` relationship), and return the replier's name and the depth at which he or she replied.

This query returns the following results:

+-------------------+-----+
| replier   | depth |
+-------------------+-----+
“Davina”	1
“Bob”	1
“Charlie”	2
“Bob”	3
+-------------------+-----+

4 rows

We see that both Davina and Bob replied directly to Bob's original email; that Charlie replied to one of the replies; and that Bob then replied to one of the replies to a reply. It's a similar pattern for a forwarded email, which can be regarded as a new email that simply happens to contain some of the text of the original email. As with the reply case, we model the new email explicitly. We also reference the original email from the

MATCH p = (email:Email{id:'6'})<-[REPLY_TO*1..4]-(:Reply)<-[SENT]-(replier)

RETURN replier.username AS replier, length(p) - 1 AS depth
ORDER BY depth

Outline

• Introduction
• Transaction Consistency
• Column-Family Stores
• Key-Value Stores
  ▪ Example: Redis
• Document Stores
  ▪ Example: MongoDB
• Graph Databases
  ▪ Example: neo4j
• Concluding Remarks

Concluding Remarks on Common NoSQL

• Aim to avoid join & ACID overhead
  – Joined within, correctness compromised for quick answers; believe in best effort
• Avoids the idea of a schema
• Query languages are more imperative
  – And less declarative
  – Developer better knows what’s going on; less reliance on smart optimization plans
  – More responsibility on developers
• No standard, well studied languages (yet)