THEORY of COMPILATION
LECTURE 08

Static Analysis

You are here

Compiler

Executable code

Up Until Now

AST

IR

Asm

9

(1) t = A – B
(2) u = A – C
(3) v = t + u
(4) A = D
(5) D = v + u

LD R1, @A
LD R2, @B
SUB R2,R1,R2
LD R3, @C
SUB R1,R1,R3
ADD R3,R2,R1
LD R2, @D
ADD R1,R3,R1
ST @A, R2
ST @D, R1

Syntax directed translation
Register allocation
Instruction selection

Today

• Dataflow analysis
• Lattices
• Chaotic Iterations
• Monotone framework (for dataflow analysis)
• A few example analyses

Static Analysis

“The algorithmic discovery of properties of a program by inspection of its source text”

— Manna, Pnueli

Reason statically — at compile time — about the possible runtime behaviors of a program
• Does not have to literally be the source text, just means w/o running it
• In a compiler, we mostly use IR
Static Analysis

- What for...

x = ?
if (x > 0) {
 y = 42;
} else {
 y = 73;
 foo();
}
assert (y == 42);

- Bad news: problem is generally undecidable

Central idea: use approximation

Over-Approximation

Conservative static analysis: assertion may be violated

Precision

/* My Awesome Static Analyzer */
main(...) {
 printf("assertion may be violated\n");
}

- Lose precision only when required
- Understand where precision is lost
Static Analysis

- Formalize software behavior using a mathematical model (semantics)
- Prove properties of the mathematical model
 - Automatically, typically with approximation of the formal semantics
- Develop theory and tools for program correctness and robustness

Static Analysis

- Spans a wide range from type checking to full functional verification
 - General safety specifications
 - Absence of resource leaks
 - Concurrency correctness conditions (e.g., progress, race-freedom)
 - Correct use of libraries (e.g., initialization)
- Under-approximations useful for bug-finding, test-case generation, ...

Static Analysis: Techniques

- Dataflow analysis
- Constraint-based analysis
- Type and effect systems
- Abstract Interpretation
 - ...

Example: Reaching Definitions

- Concept of definition and use:
 - \(x = y + z \)
 - is a definition of \(x \)
 - is a use of \(y \) and \(z \)
- A definition reaches a use if
 - value written by definition...
 - ...may be read by use

Example: Reaching Definitions

```
1 y := x
2 z := 1
3 while (y > 0) {
    4 y := y - 1
    5    y := z
} 6 y := 0
7 return y + z
```

(adapted from Nielson, Nielson & Hankin)
Example: Reaching Definitions

```
1. y := x
2. z := 1
3. while (y > 0) {
   4.   z := z * y
   5.   y := y – 1
4. }
6. y := 0
7. return y + z
```

(adapted from Nielson, Nielson & Hankin)

Dataflow Analysis: Overview

```
while (y > 0) {
   x := y
   y := y – 1
}
return y + z
```

Control-Flow Graph

```
1. y := x
2. z := 1
3. while (y > 0) {
   4.   z := z * y
   5.   y := y – 1
4. }
6. y := 0
7. return y + z
```

Transfer Functions

Given a program statement S, we can define a transfer function T_S that relates the properties that are true before the statement to the properties that are true after the statement.
Partial Orders

- Set P
- Binary relation ⊑ such that ∀x,y,z ∈ P:
 - x ⊑ x (reflexive)
 - x ⊑ y and y ⊑ z implies x ⊑ z (transitive)
- Can use partial order to define:
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- For S ⊆ P:
 - x ∈ P is an upper bound of S if ∀y ∈ S, y ⊑ x
 - x ∈ P is the least upper bound of S if
 - x is an upper bound of S, and
 - x ⊑ y for all upper bounds y of S
 - ⊔ – join, least upper bound, lub, supremum, sup
 - ⊔ S is the least upper bound of S
 - x ⊔ y = ⊔{x,y}
 - Often written as ∨ as well

Lower Bounds

- For S ⊆ P:
 - x ∈ P is a lower bound of S if ∀y ∈ S, x ⊑ y
 - x ∈ P is the greatest lower bound of S if
 - x is a lower bound of S, and
 - y ⊑ x for all greatest lower bounds y of S
 - ⊓ – meet, greatest lower bound, glb, infimum, inf
 - ⊓ S is the greatest lower bound of S
 - x ⊓ y = ⊓{x,y}
 - Often written as ∧ as well

Covering

- x ⊏ y if x ⊑ y and x ≠ y
- x is covered by y (y covers x) if
 - x ⊏ y, and
 - no z such that x ⊏ z ⊏ y
- Conceptually,
 - y covers x if there are no elements between x and y
Lattices

- If \(x \sqcup y \) and \(x \sqcap y \) exist for all \(x, y \in P \)
 then \(P \) is a lattice
- If \(\sqcup S \) and \(\sqcap S \) exist for all \(S \subseteq P \)
 then \(P \) is a complete lattice
- **Theorem:** all finite lattices are complete.
- Example of a lattice that is not complete:
 - Integers \(\mathbb{Z} \)
 - \(\sqcup = \max \), \(\sqcap = \min \)
 - But \(\sqcup \mathbb{Z} \) and \(\sqcap \mathbb{Z} \) do not exist \(\Rightarrow \) not complete
 - Conversely, \(\mathbb{Z} \cup \{+\infty, -\infty\} \) is a complete lattice

Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \)
- \(x \subseteq y \iff (x \& y) = x \) where \(\& \) is bitwise 'and'

 ![Hasse Diagram](image)

 If \(y \) covers \(x \):
 - Line from \(y \) to \(x \)
 - \(y \) above \(x \) in diagram

Top and Bottom

- Greatest element of \(P \) (if it exists) is top (\(\top \))
- Least element of \(P \) (if it exists) is bottom (\(\bot \))

\[\top = \sqcup P \quad \bot = \sqcap P \]

Product Lattices

- Given two lattices \(L \) and \(Q \), the product can easily be made a lattice
 \[(l_1, q_1) \subseteq (l_2, q_2) \iff l_1 \subseteq l_2 \text{ and } q_1 \subseteq q_2 \]

For vectors of \(L \), defining a lattice is also easy

\[(l_1, l_2, \ldots, l_n) \subseteq (q_1, q_2, \ldots, q_n) \iff \forall i (l_i \subseteq q_i) \]

Lattices of Program Properties

- Properties of interest can often be arranged into a lattice
- **Example:** Lattices of values –

 ![Lattices of Program Properties](image)

 - When the value of each variable is a lattice, the state of the program is a product lattice of the states of all variables.
A lattice of predicates
\[\langle x = \{ \perp, \text{even}, \text{odd} \}, \langle y = \{ \perp, \text{even}, \text{odd} \} \rangle \]

\[\text{e.g. } \langle x = \text{even}, y = \text{odd} \rangle \sqsubseteq \langle x = \perp, y = \text{odd} \rangle \sqsubseteq \langle x = \perp, y = \perp \rangle \]

Example

```javascript
x := 0;
y := 6;
while (x < 10) {
x := x + 2;
y := y + x;
}
assert (y is even);
```

Product lattice of two individual lattices, one per variable

Lattices of program properties

- Lattice does not have to carry a direct relationship to program values
 - Example: Can an object escape from a function?

```
can-escape
```

Computing the Transfer Function

- We must hard-code a transfer function specific to the lattice
 - Occasionally, there would be a trade-off between how precise the transfer functions are and how easy it is to compute them
- We can build lattices for arbitrary facts about the program
 - Need to make sure our transfer functions are "well behaved" (we will define "good" behavior later)

From CFG to Equations

- For every block, define state variables in and out
 - If \(i \) is the only predecessor of \(j \):
 - \(\text{in}_j = \text{out}_i \)
 - Use join (\(\sqcup \)) when multiple edges enter the same block:
 - \(\text{out}_j = \text{out}_i \sqcup \text{out}_k \)
 - \(y \) is even

```
return y
```

From CFG to Equations

- For every block, define state variables in and out
 - \(\text{out}_i = T_i(\text{in}_i) \)
 - \(\text{in}_j = (x = v_1, y = v_2) \)
 - \(\text{out}_j = (x = v_1, y = v_2) \)
 - \(y := y + 1 \)
 - odd = even
 - even = odd
We define the following transfer function:

\[\text{out}_i = \text{in}_i \setminus \{x,*,i\} \cup \{(x,i)\} \]

where

- \(x \) is the variable assigned to in \(i \)
- \(\{x,*,i\} = \{(x,l) | l \in \text{Lab}\} \)

Lab = set of all statement labels

\[k: \text{statement...} \]

\[j: \text{return y} \]

\[i: \text{y := x} \]

\[ii: \text{z := 1} \]

\[iii: \text{y > 0} \]

\[iv: \text{z := z \ast y} \]

\[v: \text{y := y – 1} \]

\[vi: \text{y := 0} \]

\[vii: \text{return y + z} \]

We define the following transfer function:

\[\text{out}_i = \text{in}_i \setminus \{x,*,i\} \cup \{(x,i)\} \]

where

- \(x \) is the variable assigned to in \(i \)
- \(\{x,*,i\} = \{(x,l) | l \in \text{Lab}\} \)

Lab = set of all statement labels

\[k: \text{...statement...} \]

\[j: \text{return y} \]

\[i: \text{y := x} \]

\[ii: \text{z := 1} \]

\[iii: \text{y > 0} \]

\[iv: \text{z := z \ast y} \]

\[v: \text{y := y – 1} \]

\[vi: \text{y := 0} \]

\[vii: \text{return y + z} \]

For every program point, we compute the set of variable definitions that reach it.

\[L = \mathcal{P} (\text{Var} \times \text{Lab}) \]

\[\{ (x,1) \} \]

\[\{ (x,2) \} \]

\[\vdots \]

\[\{ (x,n) \} \]

\[\{ (y,1) \} \]

\[\{ (y,2) \} \]

\[\vdots \]

\[\{ (y,n) \} \]

This is called a power set lattice.

\[\subseteq \]

\[\cup \]

\[∪ \]

\[\{ (x,1), (x,2) \} \]

\[\{ (x,1), (y,1) \} \]

\[\{ (x,1), (y,n) \} \]

\[\vdots \]

\[\{ (x,n), (y,n) \} \]

\[\{ (x,n), (y,n–1) \} \]

\[\vdots \]

\[\{ (x,n), (y,n) \} \]

\[\{ y+y+z \} \]

\[y := x \]

\[z := 1 \]

\[y > 0 \]

\[z := z \ast y \]

\[y := y – 1 \]

\[y := 0 \]

\[return y + z \]

\[\{ (y,1), (y,2) \} \]

\[\{ (y,1), (y,n) \} \]

\[\{ (y,n), (y,n) \} \]

\[\{ (y,n), (y,n–1) \} \]

\[\vdots \]

\[\{ (y,n), (y,n) \} \]

\[\{ y+y+z \} \]

\[y := x \]

\[z := 1 \]

\[y > 0 \]

\[z := z \ast y \]

\[y := y – 1 \]

\[y := 0 \]

\[return y + z \]

\[\{ (x,1) \} \]

\[\{ (x,2) \} \]

\[\vdots \]

\[\{ (x,n) \} \]

\[\{ (y,1) \} \]

\[\{ (y,2) \} \]

\[\vdots \]

\[\{ (y,n) \} \]

\[\{ y+y+z \} \]
System of Equations

These equations define a function over 13 variables (in \(1..7\), out \(1..6\)).

Each variable represents a value from our lattice, \(\mathcal{P}(\text{Var} \times \text{Lab})\).

\[
\langle \emptyset, \quad v_8 v_9 v_{12} v_10 v_11 v_10 v_13 v_1 \ (y,*), \quad \cup \{ (y,1) \} \\
\quad v_2 \ (z,*), \quad \cup \{ (z,2) \} \\
\quad v_3 v_4 \ (z,*), \quad \cup \{ (z,4) \} \\
\quad v_5 \ (y,*), \quad \cup \{ (y,5) \} \\
\quad v_6 \ (y,*), \quad \cup \{ (y,6) \} \rangle
\]

A solution \(v\) satisfies \(F(v) = v\).

Solving the Equations

- Fixed Point Problem
 - Given a function \(F: L \rightarrow L\), find \(x \in L\) such that \(F(x) = x\).
 - With transfer functions, you will commonly find that \(\top\) is one such solution...
 - We would like the most precise solution

Knaster-Tarski Theorem

- Order preserving (monotonic) function:
 \(x \sqsubseteq y \Rightarrow F(x) \sqsubseteq F(y)\)

- Let \(L\) be a complete lattice and \(F: L \rightarrow L\) a monotonic function. Then the set of fixed points of \(F\) is also a complete lattice.

- **Definition.** the least fixed point \(x_\bot\) is a fixed point (\(F(x_\bot) = x_\bot\)), such that for any \(x\), if \(F(x) = x\), then \(x_\bot \sqsubseteq x\).

Kleene Fixed-point Theorem

- Order preserving (monotonic) function:
 \(x \sqsubseteq y \Rightarrow F(x) \sqsubseteq F(y)\)

Let \(x_\bot\) be its least fixed point.

- In particular, \(F(x_\bot) = x_\bot\).

- We build a chain \(x_0, x_1, \ldots\) by: \(x_0 = \bot\) and \(x_{i+1} = F(x_i)\)
 - by induction, \(x_i \sqsubseteq x_{i+1}\)
 - also, \(x_i \sqsubseteq x_{i+1}\)
 - if for some \(i, x_i = x_{i+1}\) \(x_i\) is a fixed point \(x_i \sqsubseteq x_{i+1} \sqsubseteq x_i \Rightarrow x_i = x_{i+1}\)

Same trick works for computing greatest fixed point

- in that case, start with \(x_0 = \top\)

Chains

- A set \(S \subseteq L\) is a chain if
 \(\forall x, y \in S. y \sqsubseteq x \lor x \sqsubseteq y\)

- \(L\) has no infinite chains if every chain in \(L\) is finite.

- In that case, we are guaranteed to find the least fixed point in a finite number of steps.
Least Fixed Point Solution

Chaotic Iterations
- To avoid recomputing values that do not change:
 - Keep a work list of CFG nodes to update
 - Pick one node at a time
 - Update out(u) from in(u)
 - If out(u) has changed, recompute in(v) for all successors v of u and add v to the work list

Chaotic Iterations: Example
Using Reaching-Definitions Information

- Remember: this is an over-approximation
 - A definition may be reaching use
- We may err, but always on the safe side
 - We may say that a definition may reach a program point when it doesn’t
 - We never miss a definition that may reach a point
- Usage examples
 - detecting possible use before any definition
 - useful for debugging
 - very simple constant folding

Available Expressions Analysis

```
x = a + b
y = a * b
while (y > a + b) {
  a = a + 1
  x = a + b
}
```

Some Required Notation

- Classes of expressions:
 - AExp – arithmetic expressions
 - BExp – boolean expressions
- FV: (BExp U AExp) → 𝒫(Var)
 - Variables used in an expression
- AExp(a) = all (non-atomic) arithmetic sub-expressions of an arithmetic expression a
 - AExp(b) for a boolean expression b

Available Expressions Analysis

- Property space
 - L = 𝒫(AExp) ; ⊑ = ⊇
 - in, out: Lab → L
 - Map a statement label to set of arithmetic expressions that are available at (before, after) that statement
- Dataflow equations
 - Flow equations – how to join incoming dataflow facts
 - Effect equations – given an input set of expressions in(i), what is the effect of the statement at i

Available Expressions Analysis

- in(ℓ) =
 - ∅ when ℓ is the initial label
 - ∩ (out(ℓ′) | ℓ′ ∈ pred(ℓ)) otherwise
- out(ℓ) =
  ```
  ∅(a) = nil | {x′ ∈ AExp | x = FV(a) U ∪ {x′ ∈ AExp(a) | x ∈ FV(x′)}
  skip = m(ℓ)
  cond = m(ℓ) U AExp(cond)
  ```
Transfer Functions

1: \(x := a + b \)
2: \(y := a \times b \)
3: \(y > a + b \)
4: \(a := a + 1 \)
5: \(x := a + b \)

\[\text{out}(1) = \text{in}(1) \setminus \emptyset \cup \{ a + b \} \]
\[\text{out}(2) = \text{in}(2) \setminus \emptyset \cup \{ a \times b \} \]
\[\text{in}(1) = \emptyset \]
\[\text{in}(2) = \text{out}(1) \]
\[\text{in}(3) = \text{out}(2) \cap \text{out}(5) \]
\[\text{in}(4) = \text{out}(3) \]
\[\text{in}(5) = \text{out}(4) \]

Solution

\[\text{out}(1) = \text{in}(1) \setminus \emptyset \cup \{ a + b \} \]
\[\text{out}(2) = \text{in}(2) \setminus \emptyset \cup \{ a \times b \} \]
\[\text{in}(1) = \emptyset \]
\[\text{in}(2) = \text{out}(1) \]
\[\text{in}(3) = \text{out}(2) \]
\[\text{in}(4) = \text{out}(3) \]
\[\text{in}(5) = \text{out}(4) \]

Kill/Gen

Statement \[\text{out}(\ell) \]
\[x := a \]
\[\text{in}(\ell) \setminus \{ (x, i) \mid i \in \text{Lab} \} \cup \{ (x, \ell) \} \]
\[\text{skip} \]
\[\emptyset \]
\[\text{cond} \]
\[\text{in}(\ell) \]

Statement \[\text{in}(\ell) \]
\[x := a \]
\[\{ (x, \ell) \} \]
\[\emptyset \]
\[\text{cond} \]
\[\emptyset \]

\[\text{out}(\ell) = \text{in}(\ell) \setminus \text{kill}(B) \cup \text{gen}(B') \]
\[B' = \text{statement (or block) at label } \ell \]

Reaching Definitions Revisited

Statement \[\text{out}(\ell) \]
\[x := a \]
\[\{ (x, \ell) \} \setminus \{ (x, i) \mid i \in \text{Lab} \} \cup \{ (x, \ell) \} \]
\[\text{skip} \]
\[\emptyset \]
\[\text{cond} \]
\[\emptyset \]

Statement \[\text{in}(\ell) \]
\[x := a \]
\[\{ (x, \ell) \} \]
\[\emptyset \]
\[\text{cond} \]
\[\emptyset \]

Live Variables

1. \(x := 2 \)
2. \(y := 4 \)
3. \(x := 1 \)
4. if \(y > x \)
5. then \(z := y \)
6. else \(z := y + y \)
7. \(x := z \)

For each program point, which assignments \textbf{may} have been made, and not overwritten, when program execution reaches that point along \textit{some path}.

For each program point, which variables \textbf{may} be live (i.e., has some future use before re-definition, along \textit{some path}) at the exit from that point.
Live Variables
1: x := 2
2: y := 4
3: x := 1
4: if y > x
5: then z := y
6: else z := y * y;
7: x := z

Block kill gen
x := a
{ x }
FV(a)

Block kill gen
x := a
{ x }
FV(a)

Live Variables — Solution
1: x := 2
2: y := 4
3: x := 1
4: if y > x
5: then z := y
6: else z := y * y;
7: x := z

out(1) = ∅
in(2) = in(1) = ∅
in(3) = { y }
in(4) = { y }
in(5) = { z }
in(6) = { y }
in(7) = ∅

Monotone Framework
\[
\text{in}(\ell) = \begin{cases} \text{initial} \quad \text{when } \ell \text{ is an initial state} \\
\bigcup \{ \text{out}(\ell') \mid (\ell,\ell') \in \text{CFG edges} \} \quad \text{otherwise}
\end{cases}
\]
\[
\text{out}(\ell) = f_{\ell}(\text{in}(\ell))
\]

- CFG edges can be traversed either forward or backwards
- Entry labels are initial program labels or final program labels (when going backwards)
- Initial is an initial state (or final when going backwards)
- \(f \) is the transfer function associated with the block \(B \)

Forward vs. Backward Analyses
Example: Reaching Definition

- \(L = \mathcal{P}(\text{Var} \times \text{Lab}) \), partially ordered by \(\subseteq \)
- \(\sqcup \) is \(\cup \)
- \(L \) has no infinite chains because \(\text{Var} \times \text{Lab} \) is finite (for a given program)

Example: Available Expressions

- \(L = \mathcal{P}(\text{AExp}) \), partially ordered by \(\sqsubseteq = \supseteq \)
- \(\sqcup \) is \(\cap \)
- \(L \) has no infinite chains because \(\text{AExp} \) is finite (for a given program)

Analyses Summary

<table>
<thead>
<tr>
<th>Analyses</th>
<th>Reaching Definitions</th>
<th>Available Expressions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>(\mathcal{P}(\text{Var} \times \text{Lab}))</td>
<td>(\mathcal{P}(\text{AExp}))</td>
<td>(\mathcal{P}(\text{Var}))</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
<tr>
<td>(\sqcup)</td>
<td>(\sqcup)</td>
<td>(\sqcup)</td>
<td>(\sqcup)</td>
</tr>
<tr>
<td>(\sqsubseteq)</td>
<td>(\sqsubseteq)</td>
<td>(\sqsubseteq)</td>
<td>(\sqsubseteq)</td>
</tr>
<tr>
<td>Initial</td>
<td>({x, ? \mid x \in \text{Globals}})</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>Entry labels</td>
<td>{init}</td>
<td>{init}</td>
<td>final</td>
</tr>
<tr>
<td>Direction</td>
<td>forward</td>
<td>forward</td>
<td>backward</td>
</tr>
<tr>
<td>(f_r)</td>
<td>({\text{val} } = (\text{val}, \text{kill}))</td>
<td>(\cup)</td>
<td>(\cup)</td>
</tr>
</tbody>
</table>

Summary

- Static Analysis
 - Prove properties of a program at compile time
 - Over-approximate possible program behaviors
- Dataflow Analysis
 - Build control-flow graph
 - Assign transfer functions
 - Compute fixed point
- Monotone Framework
 - Can be used to express many useful analyses

Coming Up