SYNTAX ANALYSIS
BOTTOM-UP PARSING
Last Time

• Parsing
 – Top-down or bottom-up

• Top-down parsing
 – Recursive descent
 – LL(k) grammars
 – LL(k) parsing with pushdown automata

• LL(k) parsers
 – Cannot deal with common prefixes and left recursion
 – Left-recursion removal might result in complicated grammar
Parser Classes – Reminder

- Top-down (predictive)

- Bottom-up (shift-reduce)
Parser Classes – Reminder

- **Top-down (predictive)**

- **Bottom-up (shift-reduce)**

![Diagram illustrating parser classes]

- Sentential form representing x
- Already read...
- To be read
LR(k) Grammars

• A grammar is in the class LR(k) when it can be derived via:
 ‣ **Bottom-up** analysis
 ‣ Scanning the input from **left to right** (L)
 ‣ Producing the **rightmost derivation** (R)
 ‣ With **lookahead** of k tokens (k)

• A language is said to be LR(k) if it has an LR(k) grammar

• The simplest case is LR(0), which we discuss next
LR is More Powerful, But…

• Any LL(k) language is also in LR(k) (and not vice versa), *i.e.*, LL(k) ⊂ LR(k)

• **But** the lookahead is counted differently in the two cases:
 ‣ With LL(k), the algorithm sees k tokens of the right-hand side of the rule and then must select the derivation rule
 ‣ With LR(k), the algorithm sees all right-hand side of the derivation rule plus k more tokens
 • LR(0) sees the entire right-side
LR is More Powerful, But...

• Any LL(k) language is also in LR(k) (and not vice versa), \(\text{i.e.,} \) \(\text{LL}(k) \subset \text{LR}(k) \)

• **But** the lookahead is counted differently in the two cases:
 - With LL(k), the algorithm sees \(k \) tokens of the right-hand side of the rule and then must select the derivation rule
 - With LR(k), the algorithm sees **all** right-hand side of the derivation rule plus \(k \) more tokens
 • LR(0) sees the entire right-side

• The LR family of parsers is more popularly used today
Example: a Simple LR(0) Grammar

\[E \rightarrow E \ast B \mid E + B \mid B \]
\[B \rightarrow 0 \mid 1 \]

- Let us number the rules:

 (1) \(E \rightarrow E \ast B \)

 (2) \(E \rightarrow E + B \)

 (3) \(E \rightarrow B \)

 (4) \(B \rightarrow 0 \)

 (5) \(B \rightarrow 1 \)
Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

\[
E \rightarrow E \ast B \mid E + B \mid B
\]

\[
B \rightarrow 0 \mid 1
\]

0 + 0 * 1

B + 0 * 1

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

\[0 + 0 \times 1 \]
\[B + 0 \times 1 \]
\[E + 0 \times 1 \]

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

<table>
<thead>
<tr>
<th>Rule</th>
<th>Expression</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → E * B</td>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>E + B</td>
<td></td>
<td>(2)</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>(3)</td>
</tr>
<tr>
<td>B → 0</td>
<td></td>
<td>(4)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>(5)</td>
</tr>
</tbody>
</table>

Example:

0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:
0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:
0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1
E * B

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1
E * B
E

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → E * B</td>
<td>E + B</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B → 0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4)</td>
<td>(5)</td>
<td></td>
</tr>
</tbody>
</table>

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:
0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1
E * B
E

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

\[
\begin{align*}
0 + 0 * 1 \\
B + 0 * 1 \\
E + 0 * 1 \\
E + B * 1 \\
E * 1 \\
E * B \\
E
\end{align*}
\]

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:
0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E + 1
E * 1
E * B
E

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

\[0 + 0 \ast 1 \]
\[B + 0 \ast 1 \]
\[E + 0 \ast 1 \]
\[E + B \ast 1 \]
\[E \ast 1 \]
\[E \ast B \]
\[E \]

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

\[0 + 0 \times 1 \]
\[B + 0 \times 1 \]
\[E + 0 \times 1 \]
\[E + B \times 1 \]
\[E \times 1 \]
\[E \times B \]
\[E \]

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1
E * B
E

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

\[0 + 0 \times 1 \]
\[B + 0 \times 1 \]
\[E + 0 \times 1 \]
\[E + B \times 1 \]
\[E \times 1 \]
\[E \times B \]
\[E \]

Go over the input so far, and upon seeing a right-hand side of a rule, "invoke" the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:
\[
0 + 0 \ast 1
\]
\[
B + 0 \ast 1
\]
\[
E + 0 \ast 1
\]
\[
E + B \ast 1
\]
\[
E \ast 1
\]
\[
E \ast B
\]
\[
E
\]

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:

0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1
E * B
E

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Goal: Reduce the Input to the Start Symbol

Example:
0 + 0 * 1
B + 0 * 1
E + 0 * 1
E + B * 1
E * 1
E * B
E

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal)
Shift & Reduce

In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E * B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>E + B</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(1) E → E * B | (2) E + B | (3) B
(4) B → 0 | (5) B → 1

(1) E
(2) E * B
(3) E + B
(4) B → 0
(5) B → 1

Stack | Input | Action | E | E | * | B | E | + | B | 1 | B | 0 | 0
In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → E * B</td>
<td>0 + 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>B → 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B → 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shift & Reduce

E → E * B | E + B | B
(1) (2) (3)

B → 0 | 1
(4) (5)
Shift & Reduce

In each step, we either shift a symbol from the input to the stack, or reduce according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0+0*1 $</td>
<td>shift (2)</td>
</tr>
<tr>
<td>0</td>
<td>+0*1 $</td>
<td>reduce (4)</td>
</tr>
</tbody>
</table>

Grammar Rules

\[
E \rightarrow E \cdot B | E + B | B \\
B \rightarrow 0 | 1
\]

Sample Computation

1. **Input:** 0+0*1
 - **Stack:** 0
 - **Input:** 0+0*1
 - **Action:** shift
 - **Stack:** 0
 - **Input:** +0*1
 - **Action:** reduce (4)

Parse Tree

```
  E
 /|
/  \
E + B
   /|
   /  \
 B  1
  /|
 /  \
B  0
```

(1) E → E * B | E + B | B
(2) B → 0 | 1
(3) (4) (5)
Shift & Reduce

In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

$$E \rightarrow E \ast B \mid E + B \mid B$$
$$B \rightarrow 0 \mid 1$$

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0 + 0 \ast 1$</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>$+ 0 \ast 1$</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>$+ 0 \ast 1$</td>
<td>reduce (3)</td>
</tr>
</tbody>
</table>

Diagram:

```
E E * B E + B B
```

```
0 + 0 * 1
```

```
0 1
```

```
B 0
```

```
0
```

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0 + 0 \ast 1$</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>$+ 0 \ast 1$</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>$+ 0 \ast 1$</td>
<td>reduce (3)</td>
</tr>
</tbody>
</table>
Shift & Reduce

In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+0*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+0*1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+0*1 $</td>
<td>shift</td>
</tr>
</tbody>
</table>
In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0 + 0 * 1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 + 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+ 0 * 1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+ 0 * 1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+ 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+</td>
<td>0 * 1 $</td>
<td>shift</td>
</tr>
</tbody>
</table>
In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>B</td>
<td>+0*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E</td>
<td>+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+</td>
<td>0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+0</td>
<td>*1 $</td>
<td>reduce (4)</td>
</tr>
</tbody>
</table>
In each step, we either shift a symbol from the input to the stack, or reduce according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 + 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+ 0 * 1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+ 0 * 1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+ 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E +</td>
<td>0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E + 0</td>
<td>* 1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E + B</td>
<td>* 1 $</td>
<td>reduce (2)</td>
</tr>
</tbody>
</table>
In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>0+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+0*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+0*1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+</td>
<td>0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+0</td>
<td>*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E+B</td>
<td>*1 $</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>E</td>
<td>*1 $</td>
<td>shift</td>
</tr>
</tbody>
</table>
Shift & Reduce

In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 + 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+ 0 * 1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+ 0 * 1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+ 0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E +</td>
<td>0 * 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E + 0</td>
<td>* 1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E + B</td>
<td>* 1 $</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>E</td>
<td>* 1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E *</td>
<td>1 $</td>
<td>shift</td>
</tr>
</tbody>
</table>
Shift & Reduce

In each step, we either shift a symbol from the input to the stack, or reduce according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+0*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+0*1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+</td>
<td>0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+0</td>
<td>*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E+B</td>
<td>*1 $</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>E</td>
<td>*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E*</td>
<td>1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E*1</td>
<td>$</td>
<td>reduce (5)</td>
</tr>
</tbody>
</table>
In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>+0*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>+0*1 $</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>+0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+</td>
<td>0*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E+0</td>
<td>*1 $</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E+B</td>
<td>*1 $</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>E</td>
<td>*1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E*</td>
<td>1 $</td>
<td>shift</td>
</tr>
<tr>
<td>E*1</td>
<td>$</td>
<td>reduce (5)</td>
</tr>
<tr>
<td>E*B</td>
<td>$</td>
<td>reduce (1)</td>
</tr>
</tbody>
</table>
Shift & Reduce

In each step, we either **shift** a symbol from the input to the stack, or **reduce** according to one of the rules. Example: “0+0*1”.

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0+0*1$</td>
<td>shift</td>
</tr>
<tr>
<td>0</td>
<td>$+0*1$</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>B</td>
<td>$+0*1$</td>
<td>reduce (3)</td>
</tr>
<tr>
<td>E</td>
<td>$+0*1$</td>
<td>shift</td>
</tr>
<tr>
<td>E+</td>
<td>$0*1$</td>
<td>shift</td>
</tr>
<tr>
<td>E+0</td>
<td>$*1$</td>
<td>reduce (4)</td>
</tr>
<tr>
<td>E+B</td>
<td>$*1$</td>
<td>reduce (2)</td>
</tr>
<tr>
<td>E</td>
<td>$*1$</td>
<td>shift</td>
</tr>
<tr>
<td>E*</td>
<td>1</td>
<td>shift</td>
</tr>
<tr>
<td>E*1</td>
<td>$$</td>
<td>reduce (5)</td>
</tr>
<tr>
<td>E*B</td>
<td>$$</td>
<td>reduce (1)</td>
</tr>
<tr>
<td>E</td>
<td>$$</td>
<td>accept</td>
</tr>
</tbody>
</table>
Shift / Reduce Parser — Intuition

• Gather input token by token
 ‣ until we find a right-hand side of a rule
 ‣ then, replace it with the non-terminal on the left hand side

• Going over a token and recording it in the stack is a shift
 ‣ Each shift moves to a state that records what we’ve seen so far

• A reduce replaces a string on the stack with a nonterminal that derives it
LR(0) Item

For a production rule in the grammar, \[N \rightarrow \alpha \beta \]

So far we’ve matched \(\alpha \), expecting to see \(\beta \)
LR(0) Item

\[
E \rightarrow E \ast B \mid E + B \mid B \\
B \rightarrow 0 \mid 1
\]

\[
E \rightarrow E \bullet \ast B \\
E \rightarrow E \ast B \bullet
\]
LR(0) Item

\[E \rightarrow E \ast B \mid E + B \mid B \]
\[B \rightarrow 0 \mid 1 \]

E → E•* B \hspace{2cm} \text{Shift Item}

E → E * B•
LR(0) Item

\[E \rightarrow E \ast B \mid E + B \mid B \]

\[B \rightarrow 0 \mid 1 \]

Shift Item

\[E \rightarrow E \ast B \]

Reduce Item

\[E \rightarrow E \ast B \bullet \]
Example: Parsing with LR(0) Items

\[
\begin{align*}
Z &\rightarrow \text{expr } \$ \\
\text{expr} &\rightarrow \text{term} \mid \text{expr} + \text{term} \\
\text{term} &\rightarrow \text{ID} \mid (\text{expr})
\end{align*}
\]
Example: Parsing with LR(0) Items

\[
\begin{align*}
Z & \rightarrow \text{expr } \$$ \\
\text{expr} & \rightarrow \text{term} \mid \text{expr } + \text{term} \\
\text{term} & \rightarrow \text{ID} \mid (\text{expr}) \\
\end{align*}
\]

\[
\begin{align*}
Z & \rightarrow \text{E } \$ \\
\text{E} & \rightarrow \text{T} \mid \text{E } + \text{T} \\
\text{T} & \rightarrow \text{i} \mid (\text{E}) \\
\end{align*}
\]

(just a shorthand of the grammar on top)
Example: Parsing with LR(0) Items

input

\[i + i \] $\$

Z → E $\$
E → T | E + T
T → i | (E)
Example: Parsing with LR(0) Items

input

\[i + i \] $\$

\[Z \rightarrow E \] $

\[E \rightarrow T \mid E + T \]

\[T \rightarrow i \mid (E) \]

\[Z \rightarrow \cdot E \] $\$

14
Example: Parsing with LR(0) Items

input

\[i + i \ $ \]

\[
\begin{align*}
Z & \rightarrow \ E \ \$ \\
E & \rightarrow \ T \\
E & \rightarrow \ E + T \\
T & \rightarrow \ i \\
T & \rightarrow \ (\ E)
\end{align*}
\]
Example: Parsing with LR(0) Items

input

\[i + i \] $ \]

\[
\begin{align*}
Z & \rightarrow E \ $ \\
E & \rightarrow T \mid E + T \\
T & \rightarrow i \mid (E) \\
\end{align*}
\]

Closure

\[
\begin{align*}
Z & \rightarrow \cdot E \ $ \\
E & \rightarrow \cdot T \\
E & \rightarrow \cdot E + T \\
T & \rightarrow \cdot i \\
T & \rightarrow \cdot (E) \\
\end{align*}
\]
input $i + i$ \$

Z \to E \ $
E \to T \mid E + T
T \to i \mid (E)

Z \to \bullet E \$
E \to \bullet T
E \to \bullet E + T
T \to \bullet i
T \to \bullet (E)
input

\[i + i \]

\[Z \rightarrow E \$
\[E \rightarrow T | E + T \]
\[T \rightarrow i | (E) \]

\[Z \rightarrow \bullet E \$
\[E \rightarrow \bullet T \]
\[E \rightarrow \bullet E + T \]
\[T \rightarrow \bullet i \]
\[T \rightarrow \bullet (E) \]
input

\[i + i \]

\[
\begin{align*}
Z &\rightarrow E \,$ \\
E &\rightarrow T | E + T \\
T &\rightarrow i | (E)
\end{align*}
\]
input

Z → E $
E → T | E + T
T → i | (E)

Shift
input

Z → E $
E → T | E + T
T → i | (E)
input

i + i $

Shift

Z → E $
E → T | E + T
T → i | (E)

Z → •E $
E → •T
E → •E + T
T → •i
T → •(E)

Reduce item!
input \[i + i \] $ \\

\text{Reduce item!}

\begin{align*}
Z & \rightarrow \text{E} \ \$ \\
E & \rightarrow T \ | \ E + T \\
T & \rightarrow i \ | \ (\text{E})
\end{align*}
input:

\[i + i \]

Production Rules:

- **Z** → E $
- **E** → T | E + T
- **T** → i | (E)

Circular Diagram:
input \quad i + i \; \$
input $i + i$ $\$

Z → E $\$
E → T | E + T
T → i | (E)

Reduce item!
input: \(i + i \) $

\text{Reduce item!}

\begin{align*}
Z & \rightarrow E \$
E & \rightarrow T \mid E + T \\
T & \rightarrow i \mid (E)
\end{align*}
input: \(i + i\) $
input

i + i $
input

Z → E $
E → T | E + T
T → i | (E)

Z → E •$
E → E •+ T
T → i
T → (E)

Z → E •$
E → E •+ T
T → i
T → (E)

Z → E •$
E → E •+ T
T → i
T → (E)
input

\[i + i \rightarrow E \]

```
Z → E $  
E → T | E + T  
T → i | ( E )
```

```
Z → E •$  
E → E •+ T
```

```
Z → E $  
E → T | E + T  
T → i | ( E )
```

Shift
input

\[\text{E} \rightarrow \text{T} \mid \text{E} + \text{T} \]

\[\text{T} \rightarrow \text{i} \mid (\text{E}) \]

\[\text{Z} \rightarrow \text{E} \$
\]

\[\text{E} \rightarrow \text{T} \mid \text{E} + \text{T} \]

\[\text{E} \rightarrow \text{E} + \text{T} \]

\[\text{T} \rightarrow \text{i} \mid (\text{E}) \]

\[\text{Z} \rightarrow \text{E} \$
\]

\[\text{E} \rightarrow \text{E} + \text{T} \]

\[\text{T} \rightarrow \text{i} \mid (\text{E}) \]

\[\text{Z} \rightarrow \text{E} \$
\]

\[\text{E} \rightarrow \text{E} + \text{T} \]

\[\text{T} \rightarrow \text{i} \mid (\text{E}) \]

\[\text{Z} \rightarrow \text{E} \$
\]
input \[i + i \] $
input \[i + i \]
input

i + (i $

Z → E $
E → T | E + T
T → i | (E)

Z → E \cdot
Z → E \cdot
E → E \cdot
T → i
T → (E)
T → i

E → E \cdot
T → i
T → (E)
input

$ i + i $

Shift

\[
\begin{align*}
 &Z \rightarrow E \ \$ \\
 &E \rightarrow T \mid E + T \\
 &T \rightarrow i \mid (E)
\end{align*}
\]
input

```
i + i
```

Output

```
Z → E $
E → T | E + T
T → i | (E)
```

Production Rules

```
E → E + T
E → E • T
Z → E • $
Z → •E $
E → •T
E → •E + T
T → •i
T → •(E)
```

Shift

�

X
input

\[i + i \$ \]

\[
\begin{align*}
Z & \rightarrow E \$ \\
E & \rightarrow T \mid E + T \\
T & \rightarrow i \mid (E)
\end{align*}
\]

\[
\begin{align*}
Z & \rightarrow E \cdot $ \\
E & \rightarrow E \cdot + T \\
T & \rightarrow i \\
T & \rightarrow (E)
\end{align*}
\]

\[
\begin{align*}
E & \rightarrow E \cdot + T \\
T & \rightarrow i \\
T & \rightarrow (E)
\end{align*}
\]
input $ i + i $ $

Z \rightarrow E \; $ $\$
E \rightarrow T \mid E + T$ $
T \rightarrow i \mid (E)$

Z \rightarrow E \; $ $\$
E \rightarrow E \cdot + T$ $
T \rightarrow T \cdot i$ $\$
T \rightarrow T \cdot (E)$

Z \rightarrow E \; $ $\$
E \rightarrow E \cdot + T$ $
E \rightarrow T \mid E + T$ $
T \rightarrow T \cdot i$ $\$
T \rightarrow T \cdot (E)$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$

$\$
input \[i + i \] $
input $i + i$

```
Z → E $
E → T | E + T
T → i | ( E )
```

```
Z → •E $
E → •T
E → •E + T
T → •i
T → •( E )
```
input \(i + i \) $

\begin{align*}
Z & \rightarrow E \, \$ \\
E & \rightarrow T \mid E + T \\
T & \rightarrow i \mid (E)
\end{align*}

\[
\begin{array}{c}
E \rightarrow T \\
E \rightarrow E + T \\
T \rightarrow i \\
T \rightarrow (E)
\end{array}
\]

\[
\begin{array}{c}
E \rightarrow E + T \\
T \rightarrow i \\
T \rightarrow (E)
\end{array}
\]
input: $i + i$

Production rules:

- $Z \rightarrow E \, \$ \quad (Z → E \, \$)
- $E \rightarrow T \mid E + T \quad (E → T \mid E + T)$
- $T \rightarrow i \mid (E) \quad (T → i \mid (E))$
- $E \rightarrow E + T$ \quad (E → E+T)
- $E \rightarrow i$ \quad (E → i)
- $E \rightarrow \, (E)$ \quad (E → (E))
input $ i + i \$

Z → E $
E → T | E + T
T → i | (E)

Reduce item!

Z → E$

Z → E$

E → E+T
T → i
T → (E)

E → E+T

Z → E$
E → E+T
T → i
T → (E)

E → E+T

Z → E$
E → T | E + T
T → i | (E)
input

```
i + i $
```

```
Z → E $
E → T | E + T
T → i | ( E )
```

```
Z → •E $
E → •T
E → •E + T
T → •i
T → •( E )
```

```
Z → •E $
E → •E + T
```

```
```

```
Z → E•$
E → E•+ T
```
input

\[i + i \] $\]

Shift

- **Z → E $**
- **E → T | E + T**
- **T → i | (E)**

Parse Tree

- **Z → •E $**
- **E → •T**
- **E → •E + T**
- **T → •i**
- **T → •(E)**

- **Valid Parse**
 - **Z → E •$**
 - **E → E •+ T**
 - **✓**

- **Invalid Parse**
 - **Z → E •$**
 - **E → E •+ T**
 - **✗**
input \(i + i \) $
Reducing the initial rule means accept

Z → E $
E → T | E + T
T → i | (E)
View as an LR(0) Automaton

Z → •E $
E → •E + T
T → •i
T → •(E)

E → T•
T → (•E)
E → •T
T → •i
T → •(E)

T → (•E)
E → •E + T
T → •i
T → •(E)

Z → E•$
E → E•+ T

Z → E•$
E → E•+ T

(accept)

E → E + T•
E → E + T•
E → E•+T
How does the parser know what to do?

- Pushdown Automaton!
 - A state will keep the info gathered so far
 - A table will tell it “what to do” based on current state and next token
 - Some info will be kept in a stack
LR(0) Parsing

Input

Stack

Automaton

Output

ACTION Table

GOTO Table
Why do we need a stack?

- Suppose so far we have discovered $E \rightarrow B \rightarrow 0$ and $+$;
 So we have constructed sentential form “$E +$”.
- In the given grammar this can only mean

 $$E \rightarrow E + \circ B$$

- Suppose current state q_6 represents this situation.
- Now, the next token is 0, and we need to ignore q_6 for a minute, and work on $B \rightarrow 0$ to obtain $E + B$.
- Therefore, we push q_6 to the stack, and after identifying B, we pop it to continue.
The Stack

- The stack contains states
- For readability we also include variables and tokens (the recognizer does not need them)
- The initial stack contains q_0 only
- Apart from q_0 at the bottom of the stack, the rest of the stack contains pairs of (state, token) or (state, nonterminal)
The ACTION Table

- At each step we need to decide whether to **shift** the next token to the stack (and move to the appropriate state) or **reduce** a production rule from the grammar.

- The ACTION table tells us what to do based on current state and next token:

 shift n : shift and move to q_n

 reduce m: reduce according to production rule (m)

 (also: accept and error conditions)
The GOTO Table

• Defines what to do on reduce actions
• After reducing a right-hand side to the deriving non-terminal, we need to decide what the next state is
• This is determined by the previous state (which is on the stack) and the variable we got
 ▶ Suppose we reduce according to $N \to \beta$;
 ▶ We remove β from the stack, and look at the state q that is now at the top. GOTO[q, N] specifies the next state.

Note – this can be a little confusing:
• q is the state after popping β
• N is the left-hand side of the rule just used in reduce
For example...

<table>
<thead>
<tr>
<th>ACTION</th>
<th>sn = shift to state n</th>
<th>rm = reduce using rule number (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>* + 0 1 $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td>s1 s2</td>
<td>3 4</td>
</tr>
<tr>
<td>q1</td>
<td>r4 r4 r4 r4 r4</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>r5 r5 r5 r5 r5</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5 s6 acc</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td>r3 r3 r3 r3 r3</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>s1 s2</td>
<td>7</td>
</tr>
<tr>
<td>q6</td>
<td>s1 s2</td>
<td>8</td>
</tr>
<tr>
<td>q7</td>
<td>r1 r1 r1 r1 r1</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td>r2 r2 r2 r2 r2</td>
<td></td>
</tr>
</tbody>
</table>

GOTO

(1) E → E * B
(2) E → E + B
(3) E → B
(4) B → 0
(5) B → 1
The Algorithm, Formally

• Initialize the stack to q_0

• Repeat until halting:
 ‣ Consider $\text{ACTION}[q, t]$ for q at the top of stack and t the next token
 • “shift n”:
 • Remove t from the input and push t and then q_n to the stack.
 • “reduce m”, where rule (m) is $N \rightarrow \beta$:
 • Remove $|\beta|$ pairs from the stack; let q be the state at the top of the stack.
 • Push N and the state $\text{GOTO}[q, N]$ to the stack.
 • “accept”: halt successfully.
 • empty cell: halt with an error.
Using LR Items to Build the Tables

• Typically a state consists of several LR items
• For example, if we identified a string that is reduced to E, then we may be in one of the following LR items:

\[E \rightarrow E \cdot+ B \quad \text{or} \quad E \rightarrow E \cdot^* B \]

• Therefore one state would be:

\[q = \{ E \rightarrow E \cdot+ B, E \rightarrow E \cdot^* B \} \]

• But if the current state includes $E \rightarrow E \cdot^+ B$, then we must allow B to be derived too — **Closure**!
Construct the Closure

• Proposition: a closure set of LR(0) items has the following property — if the set contains an item of the form

\[A \rightarrow \alpha \cdot B \beta \]

then it must also contain an item

\[B \rightarrow \cdot \delta \]

for each rule of the form \(B \rightarrow \delta \) in the grammar.

• Building the closure set for a given item set is recursive, as \(\delta \) may also begin with a variable.
Closure: an example

The closure of the set C is

$$\text{clos}(C) = \{ E \rightarrow E + \bullet B , \\ B \rightarrow \bullet 0 , \\ B \rightarrow \bullet 1 \}$$

• This will become another parser state
Extended Grammar

• **Goal**: simple termination condition
 ‣ Assume that the initial variable only appears in a single rule. This guarantees that the last reduction can be (easily) detected.
 ‣ Any grammar can be (easily) extended to have such structure.
Extended Grammar

• **Goal**: simple termination condition
 ‣ Assume that the initial variable only appears in a single rule. This guarantees that the last reduction can be (easily) detected.
 ‣ Any grammar can be (easily) extended to have such structure.

Example: the grammar

(1) \(E \rightarrow E \ast B \)
(2) \(E \rightarrow E + B \)
(3) \(E \rightarrow B \)
(4) \(B \rightarrow 0 \)
(5) \(B \rightarrow 1 \)
Extended Grammar

• **Goal**: simple termination condition
 ‣ Assume that the initial variable only appears in a single rule. This guarantees that the last reduction can be (easily) detected.
 ‣ Any grammar can be (easily) extended to have such structure.

Example: the grammar

| (1) E → E * B |
| (2) E → E + B |
| (3) E → B |
| (4) B → 0 |
| (5) B → 1 |

Can be extended into

| (0) S → E |
| (1) E → E * B |
| (2) E → E + B |
| (3) E → B |
| (4) B → 0 |
| (5) B → 1 |
The Initial State

- To build the ACTION/GOTO table, we go through all possible states during derivation
- Each state represents a (closure) set of LR(0) items
- The initial state q_0 is the closure of the initial rule
- In our example the initial rule is $S \rightarrow \bullet E$, and therefore the initial state is

$$q_0 = \text{clos} \{ S \rightarrow \bullet E \} =$$

$$\{ S \rightarrow \bullet E , E \rightarrow \bullet E * B , E \rightarrow \bullet E + B ,$$

$$E \rightarrow \bullet B , B \rightarrow \bullet 0 , B \rightarrow \bullet 1 \}$$

- We build all possible next states by following a single symbol (token or variable)
The Next States

• For each possible terminal or variable X, and each possible state (closure set) q,
 1. Find all items in the set of q in which the dot is before an X. We denote this set by $q|X$
 2. Move the dot ahead of the X in all items in $q|X$
 3. Find the closure of the obtained set: this is the state into which we move from q upon seeing X

• Formally, the next set of a set C and next symbol X
 $\triangleright \text{step}(C,X) = \{ N \rightarrow \alpha X\cdot\beta \mid N \rightarrow \alpha\cdot X\beta \in C\}$
 $\triangleright \text{nextSet}(C,X) = \text{clos}(\text{step}(C,X))$
The Next States

Recall that in our example

\[q_0 = \text{clos}(\{ S \rightarrow \bullet E \}) = \]

\[\{ S \rightarrow \bullet E , E \rightarrow \bullet E \ast B , E \rightarrow \bullet E + B , \]

\[E \rightarrow \bullet B , B \rightarrow \bullet 0 , B \rightarrow \bullet 1 \} \]

Let us check which states are reachable from it.
The Next States

Recall that in our example

\[q_0 = \text{clos}(\{ S \rightarrow E \}) = \{ S \rightarrow E, E \rightarrow E \cdot B, E \rightarrow E + B, E \rightarrow B, B \rightarrow 0, B \rightarrow 1 \} \]

Let us check which states are reachable from it.
States reachable from q_0 in the example

$q_0 \xrightarrow{0} q_1$
$q_0\{0 = \{B \rightarrow 0 \}$
$q_1 = \text{clos}(\{B \rightarrow 0 \} = \$
\{B \rightarrow 0 \}$
States reachable from q_0 in the example

$q_0 \overset{0}{\rightarrow} q_1$
$q_0|0 = \{B \rightarrow \bullet 0\}$
$q_1 = \text{clos}(\{B \rightarrow 0 \bullet\}) = \{B \rightarrow 0 \bullet\}$

$q_0 \overset{1}{\rightarrow} q_2$
$q_0|1 = \{B \rightarrow \bullet 1\}$
$q_2 = \text{clos}(\{B \rightarrow 1 \bullet\}) = \{B \rightarrow 1 \bullet\}$
States reachable from q_0 in the example

$q_0 | 0 = \{B \rightarrow \bullet 0\}$

$q_1 = \text{clos}(\{B \rightarrow 0 \bullet\}) = \{B \rightarrow 0 \bullet\}$

$q_0 | 1 = \{B \rightarrow \bullet 1\}$

$q_2 = \text{clos}(\{B \rightarrow 1 \bullet\}) = \{B \rightarrow 1 \bullet\}$

$q_0 | E = \{S \rightarrow \bullet E , E \rightarrow \bullet E * B , E \rightarrow \bullet E + B\}$

$q_3 = \text{clos}(\{S \rightarrow E \bullet , E \rightarrow E \bullet * B , E \rightarrow E \bullet + B\}) = \{S \rightarrow E \bullet , E \rightarrow E \bullet + B , E \rightarrow E \bullet + B\}$
States reachable from q_0 in the example

$q_0 \rightarrow 0$

q_1

$q_0 \mid 0 = \{B \rightarrow \cdot 0\}$

$q_1 = \text{clos}(\{B \rightarrow 0 \cdot\}) = \{B \rightarrow 0 \cdot\}$

q_2

$q_0 \mid 1 = \{B \rightarrow \cdot 1\}$

$q_2 = \text{clos}(\{B \rightarrow 1 \cdot\}) = \{B \rightarrow 1 \cdot\}$

$q_0 \rightarrow 1$

$q_0 \mid E = \{S \rightarrow \cdot E, E \rightarrow \cdot E \cdot B, E \rightarrow \cdot E + B\}$

$q_3 = \text{clos} (\{S \rightarrow E \cdot, E \rightarrow E \cdot * B, E \rightarrow E \cdot + B\})$

$= \{S \rightarrow E \cdot, E \rightarrow E \cdot + B, E \rightarrow E \cdot + B\}$

$q_0 \rightarrow B$

$q_0 \mid B = \{E \rightarrow \cdot B\}$

$q_4 = \text{clos} (\{E \rightarrow B \cdot\}) = \{E \rightarrow B \cdot\}$
From these new states there are more reachable states

- From q_1, q_2, q_4, there are no steps because the dot is at the end of every item in their sets.

- From state q_3 we can reach the following two states —

 \[
 q_5 \iff q_3 | ^* = \{ E \rightarrow E \cdot ^* B \}
 \]

 \[
 q_5 = \text{clos} (\{ E \rightarrow E \cdot ^* B \}) = \{ E \rightarrow E \cdot ^* B , B \rightarrow \cdot 0 , B \rightarrow \cdot 1 \}
 \]

 \[
 q_6 \iff q_3 | ^+ = \{ E \rightarrow E \cdot ^+ B \}
 \]

 \[
 q_6 = \text{clos}(\{ E \rightarrow E \cdot ^+ B \}) = \{ E \rightarrow E \cdot ^+ B , B \rightarrow \cdot 0 , B \rightarrow \cdot 1 \}
 \]
Finally

- From q_5 we can proceed with $x=0$, or $x=1$, or $x=B$.
- For $x=0$ we reach q_1 again and for $x=1$ we reach q_2.
- For $x=B$ we get q_7:

 q_7

 \[
 \text{clos} \{ E \rightarrow E \ast B \bullet \} = \{ E \rightarrow E \ast B \bullet \}
 \]

- Similarly, from q_6 with $x=B$ we get q_8:

 q_8

 \[
 \text{clos} \{ E \rightarrow E + B \bullet \} = \{ E \rightarrow E + B \bullet \}
 \]

- These two states have no further steps. (Why?)
Automaton
Building the Tables

- A row for each state.
- If q_j was obtained at q_i upon seeing x, then in row q_i and column x we write j.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>*</td>
<td></td>
<td>$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E</td>
</tr>
<tr>
<td>q_0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>q_1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>q_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>q_4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>q_6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = $+$ = 0 = 1 = \in
Building the tables: accept

- Add **accept** in column $ for each state that has $S \rightarrow E\bullet$ as an item.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>q0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>q6</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>q7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building the Tables: Shift

- Any number n in the action table becomes shift n.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>0</td>
</tr>
<tr>
<td>q0</td>
<td>s1</td>
<td>s2</td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td>s6</td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>s1</td>
<td>s2</td>
</tr>
<tr>
<td>q6</td>
<td>s1</td>
<td>s2</td>
</tr>
<tr>
<td>q7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Building the Tables: Reduce

For any state whose set includes the item $A \rightarrow \alpha$, such that $A \rightarrow \alpha$ is production rule (m):

Fill *all columns* of that state in the ACTION table with *reduce m*.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>q1</td>
<td>r4</td>
<td>4</td>
</tr>
<tr>
<td>q2</td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td>acc</td>
</tr>
<tr>
<td>q4</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>s1</td>
<td>7</td>
</tr>
<tr>
<td>q6</td>
<td>s1</td>
<td>8</td>
</tr>
<tr>
<td>q7</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td>r2</td>
<td></td>
</tr>
</tbody>
</table>
Note on LR(0)

When a reduce is possible, we execute it without checking the next token.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>s1</td>
<td>3</td>
</tr>
<tr>
<td>q1</td>
<td>r4</td>
<td>4</td>
</tr>
<tr>
<td>q2</td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>s1</td>
<td>7</td>
</tr>
<tr>
<td>q6</td>
<td>s1</td>
<td>8</td>
</tr>
<tr>
<td>q7</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td>r2</td>
<td></td>
</tr>
</tbody>
</table>
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>i</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>s3</td>
<td>s2</td>
</tr>
<tr>
<td>q2</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>s7</td>
</tr>
<tr>
<td>q1</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>1</td>
</tr>
<tr>
<td>q1</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>6</td>
</tr>
<tr>
<td>q1</td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td></td>
</tr>
</tbody>
</table>

Productions

1. $Z \rightarrow E \ \$
2. $E \rightarrow T$
3. $E \rightarrow E + T$
4. $T \rightarrow i$
5. $T \rightarrow (E)$

Rules

- $(1) \quad Z \rightarrow E \ \$
- $(2) \quad E \rightarrow T$
- $(3) \quad E \rightarrow E + T$
- $(4) \quad T \rightarrow i$
- $(5) \quad T \rightarrow (E)$

Actions

- $sn = \text{shift to state } n$
- $rm = \text{reduce using rule number } (m)$
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>s5</td>
</tr>
<tr>
<td>+</td>
<td>s7</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td>)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>T</td>
<td>6</td>
</tr>
<tr>
<td>q0</td>
<td>i</td>
</tr>
<tr>
<td>q1</td>
<td>i q5</td>
</tr>
<tr>
<td>q2</td>
<td>r1</td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
</tr>
<tr>
<td>q4</td>
<td>r1</td>
</tr>
<tr>
<td>q5</td>
<td>r1</td>
</tr>
<tr>
<td>q6</td>
<td>r1</td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
</tr>
<tr>
<td>q8</td>
<td>s3</td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
</tr>
</tbody>
</table>

Stack	Input	Action
q0 i i $ s5
q0 i q5 + i $ r4
q0 T q6 + i $ r2
q0 E q1 i $ s3
q0 E q1 + q3 i $ s5
q0 E q1 + q3 i q5 + i $ r4
q0 E q1 + q3 T q4 + i $ r3
q0 E q1 + q3 T q4 + i $ r3
q0 E q1 $ s2
q0 E q1 $ q2 r1
q0 Z accept

top is on the right

(1) Z → E $
(2) E → T
(3) E → E + T
(4) T → i
(5) T → (E)
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>6</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td>)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

Input

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0 i q5</td>
<td>+ i $</td>
<td>r4</td>
</tr>
<tr>
<td>q0 T q6</td>
<td>+ i $</td>
<td>r2</td>
</tr>
<tr>
<td>q0 E q1</td>
<td>+ i $</td>
<td>s3</td>
</tr>
<tr>
<td>q0 E q1 + q3</td>
<td>i $</td>
<td>s5</td>
</tr>
<tr>
<td>q0 E q1 + q3 i q5</td>
<td>$</td>
<td>r4</td>
</tr>
<tr>
<td>q0 E q1 + q3 T q4</td>
<td>$</td>
<td>r3</td>
</tr>
<tr>
<td>q0 E q1</td>
<td>$</td>
<td>s2</td>
</tr>
<tr>
<td>q0 E q1 $ q2</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>q0 Z</td>
<td></td>
<td>accept</td>
</tr>
</tbody>
</table>

(1) $Z \rightarrow E$
(2) $E \rightarrow T$
(3) $E \rightarrow E + T$
(4) $T \rightarrow i$
(5) $T \rightarrow (E)$

Top is on the right.
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>E</td>
</tr>
<tr>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td>)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

Stack	Input	Action
q0 | i + i | s5 |
q0 i q5 | + i $ | r4 |
q0 T q6 | + i $ | r2 |
q0 E q1 | + i $ | s3 |
q0 E q1 + q3 | i $ | s5 |
q0 E q1 + q3 i q5 | $ | r4 |
q0 E q1 + q3 T q4 | $ | r3 |
q0 E q1 | $ | s2 |
q0 E q1 $ q2 | | |
q0 Z | | accept
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>E</td>
</tr>
<tr>
<td>+</td>
<td>E</td>
</tr>
<tr>
<td>(</td>
<td>T</td>
</tr>
<tr>
<td>)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

Stack

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>i + i $</td>
<td>s5</td>
</tr>
<tr>
<td>q0 i q5</td>
<td>+ i $</td>
<td>r4</td>
</tr>
<tr>
<td>q0 T q6</td>
<td>+ i $</td>
<td>r2</td>
</tr>
<tr>
<td>q0 E q1</td>
<td>+ i $</td>
<td>s3</td>
</tr>
<tr>
<td>q0 E q1 + q3</td>
<td>i $</td>
<td>s5</td>
</tr>
<tr>
<td>q0 E q1 + q3 i q5</td>
<td>$</td>
<td>r4</td>
</tr>
<tr>
<td>q0 E q1 + q3 T q4</td>
<td>$</td>
<td>r3</td>
</tr>
<tr>
<td>q0 E q1</td>
<td>$</td>
<td>s2</td>
</tr>
<tr>
<td>q0 E q1 $ q2</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>q0 Z</td>
<td></td>
<td>accept</td>
</tr>
</tbody>
</table>

top is on the right

Production Rules

1. $Z \rightarrow E$
2. $E \rightarrow T$
3. $E \rightarrow E + T$
4. $T \rightarrow i$
5. $T \rightarrow (E)$
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOTO</th>
<th>1</th>
<th>6</th>
</tr>
</thead>
</table>

Stack | Input | Action |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>i + i $</td>
<td>s5</td>
</tr>
<tr>
<td>q0 i q5</td>
<td>+ i $</td>
<td>r4</td>
</tr>
<tr>
<td>q0 T q6</td>
<td>+ i $</td>
<td>r2</td>
</tr>
<tr>
<td>q0 E q1</td>
<td>+ i $</td>
<td>s3</td>
</tr>
<tr>
<td>q0 E q1 + q3</td>
<td>i $</td>
<td>s5</td>
</tr>
<tr>
<td>q0 E q1 + q3 i q5</td>
<td>$</td>
<td>r4</td>
</tr>
<tr>
<td>q0 E q1 + q3 T q4</td>
<td>$</td>
<td>r3</td>
</tr>
<tr>
<td>q0 E q1</td>
<td>$</td>
<td>s2</td>
</tr>
<tr>
<td>q0 E q1 $ q2</td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>q0 Z</td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>i</td>
<td>1 6</td>
</tr>
<tr>
<td>q0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td>(</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td>)</td>
<td></td>
</tr>
<tr>
<td>q0</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>q1</td>
<td>s3</td>
<td>s2</td>
</tr>
<tr>
<td>q2</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>q2</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>q2</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td>4</td>
</tr>
<tr>
<td>q3</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
<td>8</td>
</tr>
<tr>
<td>q7</td>
<td>s7</td>
<td>6</td>
</tr>
<tr>
<td>q8</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>q8</td>
<td>s9</td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
<td></td>
</tr>
</tbody>
</table>

Stack	**Input**	**Action**
q0 | i + i $ | s5
q0 i q5 | + i $ | r4
q0 T q6 | + i $ | r2
q0 E q1 | + i $ | s3
q0 E q1 + q3 | i $ | s5
q0 E q1 + q3 i q5 | $ | r4
q0 E q1 + q3 T q4 | $ | r3
q0 E q1 | $ | s2
q0 E q1 $ q2 | | r1
q0 Z | | accept

(1) $Z \rightarrow E$
(2) $E \rightarrow T$
(3) $E \rightarrow E + T$
(4) $T \rightarrow i$
(5) $T \rightarrow (E)$

Top is on the right
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>E 1</td>
</tr>
<tr>
<td>+</td>
<td>E 1</td>
</tr>
<tr>
<td>(</td>
<td></td>
</tr>
<tr>
<td>)</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

(1) $Z \rightarrow E$
(2) $E \rightarrow T$
(3) $E \rightarrow E + T$
(4) $T \rightarrow i$
(5) $T \rightarrow (E)$

Stack | Input | Action |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>q_0</td>
<td>i + i</td>
<td>s_5</td>
</tr>
<tr>
<td>q_0</td>
<td>i q_5</td>
<td>+ i</td>
</tr>
<tr>
<td>q_0</td>
<td>T q_6</td>
<td>+ i</td>
</tr>
<tr>
<td>q_0</td>
<td>E q_1</td>
<td>+ i</td>
</tr>
<tr>
<td>q_0</td>
<td>E q_1 q_3</td>
<td>i</td>
</tr>
<tr>
<td>q_0</td>
<td>E q_1 q_3 i q_5</td>
<td></td>
</tr>
<tr>
<td>q_0</td>
<td>E q_1 q_3 T q_4</td>
<td></td>
</tr>
<tr>
<td>q_0</td>
<td>E q_1</td>
<td></td>
</tr>
<tr>
<td>q_0</td>
<td>E q_1 q_2</td>
<td></td>
</tr>
<tr>
<td>q_0</td>
<td>Z</td>
<td></td>
</tr>
</tbody>
</table>

top is on the right
Are we done?

• Can make a transition diagram for any grammar
• Can make a GOTO table for every grammar
Are we done?

• Can make a transition diagram for any grammar
• Can make a GOTO table for every grammar

• ...but the states are not always clear on what to do

⇒ Cannot make a deterministic ACTION table for every grammar
LR(0) Conflicts

\[
\begin{align*}
Z & \rightarrow E \, $ \\
E & \rightarrow T \\
E & \rightarrow E + T \\
T & \rightarrow i \\
T & \rightarrow (E) \\
T & \rightarrow i[E]
\end{align*}
\]
LR(0) Conflicts

q₀

Z → •E $
E → •T
E → •E + T
T → •i
T → •(E)
T → •i[E]

Z → E $
E → T
E → E + T
T → i
T → (E)
T → i[E]
LR(0) Conflicts

Z → •E $
E → •T
E → •E + T
T → •i
T → •(E)
T → •i[E]

Z → E $
E → T
E → E + T
T → i
T → (E)
T → i[E]
LR(0) Conflicts

Z → •E $
E → •T
E → •E + T
T → •i
T → •(E)
T → •i[E]

T → •E $
E → •T
E → •E + T
T → •i
T → •i[E]

q₀

q₅

shift/reduce conflict
View in Action/Goto Table

- shift/reduce conflict...

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>[</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>s₅</td>
<td></td>
<td>s₇</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td>s₃</td>
<td></td>
<td></td>
<td>s₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₂</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td></td>
</tr>
<tr>
<td>q₃</td>
<td>s₅</td>
<td></td>
<td>s₇</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>q₄</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td></td>
</tr>
<tr>
<td>q₅</td>
<td>r₄</td>
<td>r₄</td>
<td>r₄</td>
<td>r₄</td>
<td>r₄</td>
<td>r₄</td>
<td>r₄</td>
<td></td>
</tr>
<tr>
<td>q₆</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td></td>
</tr>
<tr>
<td>q₇</td>
<td>s₅</td>
<td></td>
<td>s₇</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q₈</td>
<td></td>
<td>s₃</td>
<td></td>
<td>s₉</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₉</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td></td>
</tr>
</tbody>
</table>
LR(0) Conflicts

Z → E $
E → T
E → V + T
T → i
V → i
T → (E)
LR(0) Conflicts

Z → •E $
E → •T
E → •E + T
T → •i
V → •i
T → •(E)

q₀

Z → E $
E → T
E → V + T
T → i

V → i
T → (E)
LR(0) Conflicts

Z → •E $
E → •T
E → •E + T
T → •i
V → •i
T → •(E)

Z → E $
E → T
E → V + T
T → i
V → i
T → (E)
LR(0) Conflicts

Z → •E $
E → •T
E → •E + T
T → •i
V → •i
T → •(E)

Z → E $
E → T
E → V + T
T → i
V → i
T → (E)
LR(0) Conflicts

\[Z \rightarrow \bullet E \, $ \]
\[E \rightarrow \bullet T \]
\[E \rightarrow \bullet E + T \]
\[T \rightarrow \bullet i \]
\[V \rightarrow \bullet i \]
\[T \rightarrow \bullet (E) \]

\[Z \rightarrow \bullet E \, $ \]
\[E \rightarrow T \]
\[E \rightarrow V + T \]
\[T \rightarrow i \]
\[V \rightarrow i \]

\[T \rightarrow i \bullet \]
\[V \rightarrow i \bullet \]

reduce/reduce conflict
View in Action/Goto Table

- reduce/reduce conflict...

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>s₅</td>
<td></td>
<td>s₇</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td>s₃</td>
<td></td>
<td></td>
<td>s₂</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₂</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
<td>r₁</td>
</tr>
<tr>
<td>q₃</td>
<td>s₅</td>
<td></td>
<td>s₇</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>q₄</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
<td>r₃</td>
</tr>
<tr>
<td>q₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
</tr>
<tr>
<td>q₆</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
</tr>
<tr>
<td>q₇</td>
<td>s₅</td>
<td></td>
<td>s₇</td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q₈</td>
<td></td>
<td>s₃</td>
<td></td>
<td>s₉</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₉</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
</tr>
</tbody>
</table>
View in Action/Goto Table

- reduce/reduce conflict...

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td>s3</td>
<td></td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₂</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>q₃</td>
<td>s5</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>q₄</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>q₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
<td>r₄/r₅</td>
</tr>
<tr>
<td>q₆</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
<td>r₂</td>
</tr>
<tr>
<td>q₇</td>
<td>s5</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q₈</td>
<td></td>
<td>s3</td>
<td></td>
<td>s9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₉</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
<td>r₅</td>
</tr>
</tbody>
</table>

Can there be a shift/shift conflict?
LR(0) vs. \(\varepsilon\)-Rules

- Whenever a nonterminal has an \(\varepsilon\) production, it will be reduced as soon as it is reached in the grammar (without looking at the next token).
- If the variable has another production with a terminal prefix, there is an inherent shift/reduce conflict.

\[
\begin{align*}
 A &\rightarrow \varepsilon \\
 A &\rightarrow a\ A
\end{align*}
\]

\(\times\) Not good

- Both are in the closure of any item of the form \(\{P \rightarrow \alpha\cdot A\beta\}\)

\[
\begin{align*}
 A &\rightarrow \varepsilon \\
 A &\rightarrow A\ a
\end{align*}
\]

\(\checkmark\) This is fine

- No such thing as a shift/goto conflict

\[
\begin{align*}
 A &\rightarrow \cdot \\
 A &\rightarrow \cdot a\ A
\end{align*}
\]

- Reduce item

\[
\begin{align*}
 A &\rightarrow \cdot A\ a
\end{align*}
\]

- No such thing as a shift/goto conflict

\[
\begin{align*}
 A &\rightarrow \cdot a\ A
\end{align*}
\]

- Shift item
Coming Up

Yet some more LR parsing
THEORY OF COMPILATION

LECTURE 04

SYNTAX ANALYSIS
BOTTOM-UP PARSING
You are here

Source text

Lexical Analysis

Syntax Analysis

Parsing

Semantic Analysis

IR Optimization

Code Generation

Executable code
Reminder – Parser Classes

- Top-down (predictive)
- Bottom-up (shift-reduce)
Reminder – LR(0) Parsing

Stack

Input

Automaton

GOTO Table

ACTION Table

Output
(0) $S \rightarrow E$
(1) $E \rightarrow E \ast B$
(2) $E \rightarrow E + B$
(3) $E \rightarrow B$
(4) $B \rightarrow 0$
(5) $B \rightarrow 1$

LR(0) Parsing Algorithm
Reminder – LR(0) Conflicts

Z → E $
E → T
E → E + T
T → i
T → (E)
T → i[E]
Reminder – LR(0) Conflicts

q_0

\[
\begin{align*}
Z & \rightarrow \cdot E \; $ \\
E & \rightarrow \cdot T \\
E & \rightarrow \cdot E + T \\
T & \rightarrow \cdot i \\
T & \rightarrow \cdot (E) \\
T & \rightarrow \cdot i [E]
\end{align*}
\]

\[
\begin{align*}
Z & \rightarrow E \; $ \\
E & \rightarrow T \\
E & \rightarrow E + T \\
T & \rightarrow i \\
T & \rightarrow (E) \\
T & \rightarrow i [E]
\end{align*}
\]
Reminder – LR(0) Conflicts

Z → i E $
E → i T
E → i E + T
T → i
T → i (E)
T → i [E]

Z → E $
E → T
E → E + T
T → i
T → i (E)
T → i [E]
Reminder – LR(0) Conflicts

\[
\begin{align*}
Z & \rightarrow \cdot E \ $ \\
E & \rightarrow \cdot T \\
E & \rightarrow \cdot E + T \\
T & \rightarrow \cdot i \\
T & \rightarrow \cdot (E) \\
T & \rightarrow \cdot i[E] \\
\end{align*}
\]

\[
\begin{align*}
T & \rightarrow \cdot (E) \\
T & \rightarrow i \cdot [E] \\
T & \rightarrow \cdot (E) \\
T & \rightarrow \cdot i[E] \\
\end{align*}
\]

shift/reduce conflict
Reminder – LR(0) Conflicts

Z → E $
E → T
E → V + T
T → i
V → i
T → (E)
Reminder – LR(0) Conflicts

Grammar Rules:

- $Z \rightarrow E\,\$
- $E \rightarrow T$
- $E \rightarrow E + T$
- $T \rightarrow i$
- $V \rightarrow i$
- $T \rightarrow (E)$

Highlighted Rule:

- $V \rightarrow i$
Reminder – LR(0) Conflicts

q₀

Z → E $
E → T
E → E + T
T → i
V → i
T → (E)

Z → E $
E → T
E → V + T
T → i
V → i
T → (E)
Reminder – LR(0) Conflicts

Z → •E $
E → •T
E → •E + T
T → •i
V → •i
T → •(E)

q₀

T → ...
(→ q₅
i
V → ...

Z → E $
E → T
E → V + T
T → i
V → i
T → (E)

q₅

T → i•
V → i•
Reminder – LR(0) Conflicts

\[Z \rightarrow \cdot E \$
E \rightarrow \cdot T
E \rightarrow \cdot E + T
T \rightarrow \cdot i
V \rightarrow \cdot i
T \rightarrow \cdot (E) \]

\[T \rightarrow \cdot i \]
\[V \rightarrow \cdot i \]

reduce/reduce conflict
Back to Action/Goto Table

- Remember? Reductions ignore the input...

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td>s3</td>
<td></td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q8</td>
<td></td>
<td>s3</td>
<td></td>
<td>s9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SLR Grammars

• A string should only be reduced to a nonterminal N if the look-ahead is a token that can follow N

• A reduce item $N \rightarrow \alpha \cdot$ is applicable only when the look-ahead is in FOLLOW(N)

• Differs from LR(0) only on the original “reduce” rows

• Allows us to sometimes not reduce, instead shift (or do nothing = error)
Rule 1 can only be used with the end of input “$” sign.
GOTO/ACTION Table

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td>s3</td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td>r3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q8</td>
<td></td>
<td>s3</td>
<td></td>
<td>s9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The tokens that can follow E are `'+'`, `'('`, and `'$'.`

- (1) $Z \rightarrow E \; \$$
- (2) $E \rightarrow T$
- (3) $E \rightarrow E \; T$
- (4) $T \rightarrow i$
- (5) $T \rightarrow (\; E \;)$
The tokens that can follow E are ‘+’ ‘)’ and ‘$’.

<table>
<thead>
<tr>
<th>States</th>
<th>i</th>
<th>+</th>
<th>(</th>
<th>)</th>
<th>$</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q1</td>
<td></td>
<td>s3</td>
<td></td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>q4</td>
<td></td>
<td>r3</td>
<td></td>
<td>r3</td>
<td>r3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q5</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td>r4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q6</td>
<td></td>
<td>r2</td>
<td></td>
<td>r2</td>
<td>r2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
<td></td>
<td>s7</td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q8</td>
<td></td>
<td>s3</td>
<td></td>
<td>s9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td>r5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>State</th>
<th>Symbol</th>
<th>Goto/Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>q0</td>
<td>s5</td>
<td>s7</td>
</tr>
<tr>
<td>q1</td>
<td>s3</td>
<td>s2</td>
</tr>
<tr>
<td>q2</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>q3</td>
<td>s5</td>
<td>s7</td>
</tr>
<tr>
<td>q4</td>
<td>r3</td>
<td>r3</td>
</tr>
<tr>
<td>q5</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>q6</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>q7</td>
<td>s5</td>
<td>s7</td>
</tr>
<tr>
<td>q8</td>
<td>s3</td>
<td>s9</td>
</tr>
<tr>
<td>q9</td>
<td>r5</td>
<td>r5</td>
</tr>
</tbody>
</table>

- **GOTO**:
 - (1) $Z \rightarrow E \; $*
 - (2) $E \rightarrow T$
 - (3) $E \rightarrow E + T$
 - (4) $T \rightarrow i$
 - (5) $T \rightarrow (\; E \;)$

- **ACTION**:
 - (1) $E \rightarrow T$
 - (3) $E \rightarrow E + T$

Same for T
Now let’s add “$T \rightarrow i \ [E]$”
Now let’s add “$T \rightarrow i \{ E \}$”
Now let’s add “T → i [E]”

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>+</th>
<th>()</th>
<th>$</th>
<th>[]</th>
<th>E</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>q₀</td>
<td>s5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>q₁</td>
<td></td>
<td>s3</td>
<td></td>
<td>s2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₃</td>
<td>s5</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>q₄</td>
<td></td>
<td>r3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₅</td>
<td></td>
<td>r4</td>
<td></td>
<td></td>
<td>s10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₆</td>
<td></td>
<td>r2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₇</td>
<td>s5</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>q₈</td>
<td></td>
<td>s3</td>
<td></td>
<td>s9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₉</td>
<td></td>
<td>r5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q₁₀</td>
<td>s5</td>
<td>s7</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

(1) Z → E $
(2) E → T
(3) E → E + T
(4) T → i
(5) T → (E)
(6) T → i [E]
SLR: check next token when reducing
SLR: check next token when reducing

- Simple LR(1), or SLR(1), or SLR.
- Example demonstrates elimination of a shift/reduce conflict.
- Can eliminate reduce/reduce conflicts when conflicting rules’ left-hand sides satisfy:
 \[\text{FOLLOW}(T) \cap \text{FOLLOW}(V) = \emptyset. \]
- But cannot resolve all conflicts.
Consider this non-LR(0) grammar

(0) $S' \rightarrow S$
(1) $S \rightarrow L = R$
(2) $S \rightarrow R$
(3) $L \rightarrow *\ R$
(4) $L \rightarrow id$
(5) $R \rightarrow L$
Shift/reduce conflict

- $S \rightarrow L \cdot = R$ vs. $R \rightarrow L \cdot$
- FOLLOW(R) contains "="

$S \Rightarrow L = R \Rightarrow * R = R$

\Rightarrow SLR cannot resolve the conflict either
Resolving the Conflict

• In SLR: a reduce item $N \rightarrow \alpha\bullet$ is applicable when the lookahead is in \textsc{follow}(N).
• But there is a whole \textit{sentential form} that we have discovered so far.
• We can ask what the next token may be given all \textit{previous reductions}
• For example, even looking at the FOLLOW of the entire sentential form is more restrictive than looking at the FOLLOW of the last variable.
• In a way, \textsc{follow}(N) merges look-ahead for all possible occurrences of N:

 \[
 \text{FOLLOW}(\sigma N) \subseteq \text{FOLLOW}(N)
 \]

• \textit{LR(1)} keeps look-ahead with \textit{each} LR item
LR(1) Item

So far we’ve matched \(\alpha \), expecting to see \(\beta \), followed by the lookahead \(\sigma \)
LR(1) Item

So far we’ve matched α, expecting to see β, followed by the lookahead σ
LR(1) Item

- Example: the production $L \rightarrow \text{id}$ yields the following LR(1) items

\[
\begin{align*}
&\text{(0) } S' \rightarrow S \\
&\text{(1) } S \rightarrow L \rightarrow R \\
&\text{(2) } S \rightarrow R \\
&\text{(3) } L \rightarrow * R \\
&\text{(4) } L \rightarrow \text{id} \\
&\text{(5) } R \rightarrow L
\end{align*}
\]

- SLR:
 Reduce only when next token is in FOLLOW(L)

- LR(1):
 Refines FOLLOW by using the RHS of the rules

\[
\begin{align*}
&[L \rightarrow \bullet \text{id}] \\
&[L \rightarrow \bullet \text{id}, *] \\
&[L \rightarrow \bullet \text{id}, =] \\
&[L \rightarrow \bullet \text{id}, \text{id}] \\
&[L \rightarrow \bullet \text{id}, \$] \\
&[L \rightarrow \text{id} \bullet, *] \\
&[L \rightarrow \text{id} \bullet, =] \\
&[L \rightarrow \text{id} \bullet, \text{id}] \\
&[L \rightarrow \text{id} \bullet, \$]
\end{align*}
\]
LR(1) Item

- Example: the production $L \rightarrow \text{id}$ yields the following LR(1) items

- SLR: Reduce only when next token is in FOLLOW(L)
- LR(1): Refines FOLLOW by using the RHS of the rules
Creating the states for LR(1)

• We start with the initial state:

q₀ will be the closure of: (S’ → • S , $)

• Closure for LR(1):

• For every [A → α • Bβ , c] in the state:
 ‣ for every production B → δ and every token b ∈ FIRST(βc)
 ‣ [B → • δ , b] should also be in the state
Closure of $(S' \rightarrow \bullet S, \$$)

- We would like to add rules that start with S, but keep track of possible lookahead.

(0) $S' \rightarrow S$
(1) $S \rightarrow L = R$
(2) $S \rightarrow R$
(3) $L \rightarrow * R$
(4) $L \rightarrow id$
(5) $R \rightarrow L$
Closure of \((S' \rightarrow \bullet S, \$) \)

- We would like to add rules that start with \(S \), but keep track of possible lookahead.
 - \((S' \rightarrow \bullet S, \$) \)

(0) \(S' \rightarrow S \)
(1) \(S \rightarrow L = R \)
(2) \(S \rightarrow R \)
(3) \(L \rightarrow * R \)
(4) \(L \rightarrow \text{id} \)
(5) \(R \rightarrow L \)
Closure of \((S' \rightarrow \bullet S, \$)\)

- We would like to add rules that start with \(S\), but keep track of possible lookahead.
 - \((S' \rightarrow \bullet S, \$)\)
 - \((S \rightarrow \bullet L = R, \$)\)
 - Rules for \(S\)
 - \((S \rightarrow \bullet R, \$)\)
Closure of \((S' \rightarrow \bullet S, \$)\)

• We would like to add rules that start with \(S\), but keep track of possible lookahead.

\[
\begin{align*}
(S' & \rightarrow \bullet S, \$) \\
(S & \rightarrow \bullet L = R, \$) & \text{ – Rules for } S \\
(S & \rightarrow \bullet R, \$) \\
(L & \rightarrow \bullet * R, =) & \text{ – Rules for } L \\
(L & \rightarrow \bullet id, =)
\end{align*}
\]
Closure of \((S' \rightarrow \bullet S, \$)\)

• We would like to add rules that start with \(S\), but keep track of possible lookahead.

- \((S' \rightarrow \bullet S, \$)\)
- \((S \rightarrow \bullet L = R, \$)\) – Rules for \(S\)
- \((S \rightarrow \bullet R, \$)\)
- \((L \rightarrow \bullet * R, =)\) – Rules for \(L\)
- \((L \rightarrow \bullet \text{id}, =)\)
- \((R \rightarrow \bullet L, \$)\) – Rules for \(R\)
Closure of \((S' \rightarrow \bullet S, \$)\)

- We would like to add rules that start with \(S\), but keep track of possible lookahead.

- \((S' \rightarrow \bullet S, \$)\)
- \((S \rightarrow \bullet L = R, \$)\) – Rules for \(S\)
- \((S \rightarrow \bullet R, \$)\)
- \((L \rightarrow \bullet * R, =)\) – Rules for \(L\)
- \((L \rightarrow \bullet id, =)\)
- \((R \rightarrow \bullet L, \$)\) – Rules for \(R\)
- \((L \rightarrow \bullet * R, \$)\) – More rules for \(L\)
- \((L \rightarrow \bullet id, \$)\)

(0) \(S' \rightarrow S\)
(1) \(S \rightarrow L = R\)
(2) \(S \rightarrow R\)
(3) \(L \rightarrow * R\)
(4) \(L \rightarrow id\)
(5) \(R \rightarrow L\)
The State Machine

0
(S’ → · S, $)
(S → · L = R, $)
(S → · R, $)
(L → · * R, =)
(L → · id, =)
(R → · L, $)
(L → · id, $)
(L → · * R, $)

(0) S’ → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

*
The State Machine

0
(S’ $)
(S → S , $)
(S → R , $)
(L → R , =)
(L → id , =)
(R → L , $)
(L → id , $)
(L → R , $)

4
(L → id , $)
(R → L , $)
(L → id , $)
(L → R , $)
(L → * R , $)

(0) S’ → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → · S, $)
(S → · L = R, $)
(S → · R, $)
(L → · * R, =)
(L → · id, =)
(R → · L, $)
(L → · id, $)
(L → · * R, $)

4
(L → · R, =)
(R → · L, =)
(L → · * R, =)
(L → · id, =)
(L → · R, $)
(L → · * R, $)
(R → · L, $)
(L → · * R, $)
(L → · id, $)
The State Machine

0
(S' → · S, $)
(S → · L = R, $)
(S → · R, $)
(L → · * R, =)
(L → · id, =)
(R → · L, $)
(L → · id, $)
(L → · * R, $)

4
(L → * · R, =)
(R → · L, =)
(L → · * R, =)
(L → · id, =)
(L → * · R, $)
(R → · L, $)
(L → · * R, $)
(L → · id, $)
The State Machine

0
(S' → · S, $)
(S → · L = R, $)
(S → · R, $)
(L → · * R, =)
(L → · id, =)
(R → · L, $)
(L → · id, $)
(L → · * R, $)

3
(S → R ·, $)

R

4
(L → * · R, =)
(R → · L, =)
(L → · * R, =)
(L → · id, =)
(L → * · R, $)
(L → * · R, $)
(R → · L, $)
(L → · * R, $)
(L → · id, $)

The State Machine

(0) S' → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S’ → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

3
(S → R · , $)

4
(L → * · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → * · R , $)
(R → · L , $)
(L → · * R , $)
(L → · id , $)

The State Machine

(0) S’ → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

(0) S' → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → · S ,$)
(S → · L = R ,$)
(S → · R ,$)
(L → · * R ,=)
(L → · id ,=)
(R → · L ,$)
(L → · id ,$)
(L → · * R ,$)

1
(S' → S · ,$)
(S → R · ,$)

2
(S → R · ,$)

3
(S → R · ,$)

4
(L → * · R ,=)
(L → · * R ,=)
(L → · id ,=)
(L → * · R ,$)
(R → · L ,=)
(R → · L ,$)
(L → · * R ,$)
(L → · id ,$)

(0) S' → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → S , $)
(S → L = R , $)
(S → R , $)
(L → * R , =)
(L → id , =)
(R → L , $)
(L → id , $)
(L → * R , $)

1
(S → S , $)
(L → * R , =)
(R → L , =)
(L → id , =)
(R → L , $)
(L → * R , $)
(L → id , $)

2
(S → L = R , $)
(L → L , $)
(L → * R , $)
(R → L , $)
(L → * R , $)
(L → id , $)

3
(S → R · , $)
(L → * R , =)
(R → L , =)
(L → * R , =)
(L → id , =)
(R → L , $)
(L → * R , $)
(L → id , $)

4
(L → * R , =)
(R → L , =)
(L → * R , =)
(R → L , $)
(L → * R , $)
(R → L , $)
(L → * R , $)
(L → id , $)
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S → R · , $)
(S' → S · , $)

2
(S → L · = R , $)
(S → L · , $)
(R → L · , $)
(L → · id , $)
(L → * · R , $)
(R → · L , $)
(L → · id , $)

3
(S → R · , $)
(R → · L , $)
(L → · id , =)

4
(L → * · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → * · R , $)
(R → · L , $)
(L → · * R , $)
(L → · id , $)
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S' → S · , $)
(S → R · , $)

2
(S → L · = R , $)
(R → L · , $)
(L → · * R , =)
(L → · id , =)
(R → L · , $)
(L → · id , $)
(L → · * R , $)

3
(S → R · , $)

4
(L → · * R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(R → · R , $)
(L → · id , $)
(R → · R , $)
(L → · id , $)
(L → · id , $)

5
(L → id · , $)
(L → id · , =)

(0) S' → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S' → S · , $)

2
(S → L · = R , $)
(R → L · , $)

3
(S → R · , $)

4
(L → * · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → * · R , $)
(R → · L , $)
(L → · id , $)

5
(L → id · , $)
(L → id · , =)

(0) S' → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $

1
(S' → S · , $)
(S → R · , $)

2
(S → L · = R , $)
(R → L · , $)

3
(S → R · , $)

4
(L → * · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → * · R , $)
(R → · L , $)

5
(L → id · , $)
(L → id · , =)

6
(L → L · , $)
(L → · * R , $)
(L → · id , $)

7
(L → * R · , =)
(L → * R · , $)
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S' → S · , $)
(S → L · = R , $)
(R → L · , $)
(L → · * R , =)
(L → · id , =)
(R → · L , =)
(L → · id , $)
(L → · * R , $)

2
(S → L · = R , $)
(R → L · , $)
(L → · * R , =)
(L → · id , =)
(R → · L , =)
(L → · id , $)
(L → · * R , $)

3
(S → R · , $)
(R → L · , $)
(L → · * R , =)
(L → · id , $)
(L → · * R , $)

4
(L → · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · * R , $)
(L → · id , $)

5
(L → id · , $)
(L → id · , =)
(L → id , $)

6
(L → id · , $)
(L → id · , =)

7
(L → · R · , =)
(L → · R · , $)
The State Machine

0
(S' → · S, $)
(S → · L = R, $)
(S → · R, $)
(L → · * R, =)
(L → · id, =)
(R → · L, $)
(L → · id, $)
(L → · * R, $)

1
(S → S → · S, $)

2
(S → L → · L = R, $)
(R → L → · L, $)
(L → · * R, $)
(L → id · , =)
(L → * · R, $)

3
(S → R → · R, $)

4
(L → · * R, =)
(R → · L, =)
(L → · * R, =)
(L → · id, =)
(L → * · R, $)
(R → · L, $)
(L → · * R, $)
(L → · id, $)

5
(L → id · , $)
(L → id · , =)

6
(S → L → · L = R, $)
(R → L → · L, $)
(L → · * R, $)
(L → id · , =)

7
(L → * R → · R, =)
(L → * R → · R, $)

(0) S’ → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S' → ∙ S, $)
(S → ∙ L = R, $)
(S → ∙ R, $)
(L → ∙ * R, =)
(L → ∙ id, =)
(R → ∙ L, $)
(L → ∙ id, $)
(L → ∙ * R, $)

1
(S → L → ∙ R, =)
(L → ∙ id, =)
(R → ∙ L, $)
(L → ∙ id, $)
(L → ∙ * R, $)

2
(S → L → ∙ R, $)
(R → ∙ L, $)
(L → ∙ id, $)
(L → ∙ * R, $)
(L → * ∙ R, =)

3
(S → R → ∙ R, $)
(R → R → ∙ L, $)

4
(L → * ∙ R, =)
(R → ∙ L, =)
(L → ∙ * R, =)
(L → ∙ id, =)
(L → * ∙ R, $)

5
(L → id → ∙ R, $)
(L → id → ∙ L, =)
(L → id → ∙ R, =)

6
(S → S' → ∙ S, $)

7
(L → ∗ R → ∙ R, =)
(L → ∗ R → ∙ R, $)

8
(R → L → ∙ R, =)
(R → L → ∙ R, $)
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S → S · , $)

2
(S → R · , $)

3
(S → R · , $)

4
(L → * · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → * · R , $)
(R → · L , $)
(L → · * R , $)
(L → · id , $)

5
(L → id · , $)
(L → id · , =)

6

(L → * R · , =)
(R → L · , $)

7

(R → L · , =)

8
(R → L · , $)

(0) S’ → S
(1) S → L = R
(2) S → R
(3) L → * R
(4) L → id
(5) R → L
The State Machine

0
(S’ → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S → L · = R , $)
(S → R · , $)

2
(S → L · = R , $)
(R → L · , $)
(L → · * R , =)
(L → · id , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)

3
(S → R · , $)
(L → · * R , $)

4
(L → * · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)

5
(L → id · , $)
(L → id · , =)
(L → · * R , $)
(R → · L , $)

6
(S → L = · R , $)
(L → id · , $)
(R → · L , $)
(L → · id , $)

7
(L → * R · , =)
(L → * R · , $)
(R → L · , =)
(L → * R · , $)

8
(R → L · , $)
The State Machine

0
(S' → · S , $)
(S → · L = R , $)
(S → · R , $)
(L → · * R , =)
(L → · id , =)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

1
(S' → S · , $)
(S → L · = R , $)
(R → · L , $)
(L → · id , $)
(L → · * R , $)

2
(S → L · = R , $)
(R → L · , $)
(L → · * R , $)
(L → · id , $)

3
(S → R · , $)

4
(L → · · R , =)
(R → · L , =)
(L → · * R , =)
(L → · id , =)
(L → · · R , $)
(R → · L , $)
(L → · * R , $)
(L → · id , $)

5
(L → id · , $)
(L → id , $)

6
(S → L = · R , $)
(R → · L , $)
(L → · * R , $)
(L → · id , $)

7
(L → · R · , =)
(L → · R · , $)

8
(R → L · , =)
(R → L · , $)

9
(S → L = R · , $)
The State Machine

1. $(S' \rightarrow S \cdot, \$)$
2. $(S \rightarrow L \cdot = R, \$) \quad (R \rightarrow L \cdot, \$)$
3. $(S \rightarrow R \cdot, \$)$
4. $(L \rightarrow id \cdot, \$) \quad (L \rightarrow id \cdot, =)$
5. $(L \rightarrow id \cdot, \$)$ \quad (L \rightarrow id \cdot, =)$
6. $(S \rightarrow L \equiv R, \$) \quad (R \rightarrow \cdot L, \$) \quad (L \rightarrow \cdot * R, \$) \quad (L \rightarrow \cdot id, \$)$
7. $(L \rightarrow * R \cdot, \$) \quad (L \rightarrow * R \cdot, =)$
8. $(R \rightarrow L \cdot, \$) \quad (R \rightarrow L \cdot, =)$
9. $(S \rightarrow L = R \cdot, \$)$
10. $(L \rightarrow \cdot L, \$)$ \quad (L \rightarrow \cdot * R, \$) \quad (L \rightarrow \cdot id, \$)$
11. $(L \rightarrow id \cdot, \$)$ \quad (R \rightarrow L \cdot, \$)$
12. $(R \rightarrow L \cdot, \$)$
13. $(L \rightarrow * R \cdot, \$)$
Back to the conflict

- Is there a conflict now?

(0) $S' \rightarrow S$
(1) $S \rightarrow L = R$
(2) $S \rightarrow R$
(3) $L \rightarrow * R$
(4) $L \rightarrow \text{id}$
(5) $R \rightarrow L$

q_2

$S \rightarrow L \ast = R, \$
$R \rightarrow L \ast, \$

q_6

$S \rightarrow L = \ast R, \$
$R \rightarrow \ast L, \$
$L \rightarrow \ast * R, \$
$L \rightarrow \ast \text{id}, \$

Building the Tables

• Similarly to LR(0) and SLR, we start with the automaton.
• Turn each transition in a token column to a shift.
• The variables’ columns form the GOTO section.
• The “acc” is put in the $ column, for any state that contains $(S' \rightarrow S\bullet, \$)$.
• For any state that contains an item of the form $(A \rightarrow \beta\bullet, a)$, where $A \rightarrow \beta$ is rule number (m), use “reduce m” for the row of this state and the column of token a.
Building the Table

ACTION

<table>
<thead>
<tr>
<th></th>
<th>id</th>
<th>*</th>
<th>=</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>s5</td>
<td>s4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>acc</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>s6</td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>r2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>s5</td>
<td>s4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>r4</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>s11</td>
<td>s10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>r3</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>r5</td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>s11</td>
<td>s10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>r5</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td>r1</td>
<td></td>
</tr>
</tbody>
</table>

GOTO

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>R</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. $(0) S' \rightarrow S$
2. $(1) S \rightarrow L = R$
3. $(2) S \rightarrow R$
4. $(3) L \rightarrow * R$
5. $(4) L \rightarrow id$
6. $(5) R \rightarrow L$
Bottom-up Parsing

- LR(k)
- SLR
- LALR (variant of LR(1))

- All follow the same pushdown-based algorithm
- Differ on type of “LR Items”

\[
\begin{align*}
LR(0) & : N \rightarrow \alpha \cdot \beta \\
SLR(1) & : N \rightarrow \alpha \cdot \beta, \sigma \\
LR(1) & : N \rightarrow \alpha \cdot \beta, \sigma
\end{align*}
\]
Chomsky Hierarchy

- Regular
- Context free
- Context sensitive
- Recursively enumerable

- Finite-state automaton
- Non-deterministic pushdown automaton
- Linear-bounded non-deterministic Turing machine
- Turing machine
Grammar Hierarchy

Non-ambiguous CFG

LR(1)
LALR(1)
SLR(1)
LR(0)
Grammar Hierarchy

Non-ambiguous CFG

LR(1)
LALR(1)
LL(1)
SLR(1)
LR(0)
Building the Parse Tree

• Done at the time of reduce.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$</td>
</tr>
<tr>
<td>q_8</td>
<td>r2</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
(0) & S \rightarrow E \\
(1) & E \rightarrow E \ast B \\
(2) & E \rightarrow E + B \\
(3) & E \rightarrow B \\
(4) & B \rightarrow 0 \\
(5) & B \rightarrow 1 \\
\end{align*}
\]

```java
{ 
    result = new Node("E");
    result.addChild(stack[top-6]);
    result.addChild(stack[top-4]);
    result.addChild(stack[top-2]);
    pop(6);
    next = GOTO[stack[top-1], "E"]; 
    push(result);
    push(next);
}
```
Building the Parse Tree

- Done at the time of **reduce**.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>q₈</td>
<td>r₂</td>
<td>r₂</td>
</tr>
</tbody>
</table>

```java
{ 
    result = new Node("E");
    result.addChild(stack[top-6]);
    result.addChild(stack[top-4]);
    result.addChild(stack[top-2]);
    pop(6);
    next = GOTO[stack[top-1], "E"]; 
    push(result);
    push(next);
}
```
Building the Parse Tree

- Done at the time of **reduce**.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td>E</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>T</td>
</tr>
<tr>
<td>q8</td>
<td>r2</td>
<td></td>
</tr>
</tbody>
</table>

```java
{ 
    result = new Node("E");
    result.addChild(stack[top-6]);
    result.addChild(stack[top-4]);
    result.addChild(stack[top-2]);
    pop(6);
    next = GOTO[stack[top-1], "E"]; 
    push(result);
    push(next);
}
```
Building the Parse Tree

• Done at the time of `reduce`.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>q_8</td>
<td>r2</td>
<td>r2</td>
</tr>
</tbody>
</table>

```java
{ 
    result = new Node("E");
    result.addChild(stack[top-6]);
    result.addChild(stack[top-4]);
    result.addChild(stack[top-2]);
    pop(6);
    next = GOTO[stack[top-1], "E"]; 
    push(result);
    push(next);
}
```
Building the Parse Tree

• Done at the time of reduce.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>q8</td>
<td>r2</td>
<td>r2</td>
</tr>
</tbody>
</table>

result = new Node("E");
result.addChild(stack[top-6]);
result.addChild(stack[top-4]);
result.addChild(stack[top-2]);
pop(6);
next = GOTO[stack[top-1], "E"];
push(result);
push(next);
Building the Parse Tree

- Done at the time of *reduce*.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>q_8</td>
<td>r2</td>
<td>r2</td>
</tr>
</tbody>
</table>

(0) S → E
(1) E → E * B
(2) E → E + B
(3) E → B
(4) B → 0
(5) B → 1

```java
{ 
result = $0 = new Node("E");
result.addChild($1);
result.addChild($2);
result.addChild($3);
pop(6);
next = GOTO[stack[top-1], "E"];
push($0);
push(next);
}
```

```java
result = $0 = new Node("E");
result.addChild($1);
result.addChild($2);
result.addChild($3);
```
Building the **Abstract** Syntax Tree

- Generally — just “skip over” the creation of some internal nodes and you get an AST

```plaintext
E → E + B {  
  $0 = \text{new Node}("+");  
  $0$.addChild($1);  
  $0$.addChild($3);  
}
E → B {  
  $0 = $1;  
}
E → E + B {  
  $0 = \text{new Node}("#");  
  $0$.value = 0;  
}
```

Production Rules

- (0) $S \rightarrow E$
- (1) $E \rightarrow E \ast B$
- (2) $E \rightarrow E + B$
- (3) $E \rightarrow B$
- (4) $B \rightarrow 0$
- (5) $B \rightarrow 1$
Building the Abstract Syntax Tree

• Generally — just “skip over” the creation of some internal nodes and you get an AST

```
E → E + B {  
    $0 = new Node("+");  
    $0.addChild($1);  
    $0.addChild($3);  
}
E → B {  
    $0 = $1;  
}
E → E + B {  
    $0 = new Node("#");  
    $0.value = 0;  
}
E → E * B
E → E + B
E → B
B → 0
B → 1
```

(0) S → E
(1) E → E * B
(2) E → E + B
(3) E → B
(4) B → 0
(5) B → 1
Building the **Abstract** Syntax Tree

- Generally — just “skip over” the creation of some internal nodes and you get an AST

```
E → E + B {  
  $0 = \texttt{new Node} ("+");  
  $0$.addChild($1);  
  $0$.addChild($3);  
}
E → B {  
  $0 = $1;  
}
E → E + B {  
  $0 = \texttt{new Node} ("#");  
  $0$.value = 0;  
}
```

(0) S → E
(1) E → E * B
(2) E → E + B
(3) E → B
(4) B → 0
(5) B → 1
Summary

✓ Bottom up derivation
✓ LR(k) can decide on a reduce after seeing the entire right side of the rule plus k look-ahead tokens.
 ✓ particularly LR(0) – must reduce without lookahead.
✓ Using a table and a stack to derive.
✓ Definition of LR Items and the automaton.
✓ Creating the table from the automaton.
✓ LR(0), SLR, LR(1) – different kinds of LR items, same basic algorithm
 • LALR: in the tutorial.
Summary

✓ Bottom up derivation
✓ LR(k) can decide on a reduce after seeing the entire right side of the rule plus k look-ahead tokens.
 ✓ particularly LR(0) – must reduce without lookahead.
✓ Using a table and a stack to derive.
✓ Definition of LR Items and the automaton.
✓ Creating the table from the automaton.
✓ LR(0), SLR, LR(1) – different kinds of LR items, same basic algorithm
 • LALR: in the tutorial.
 Semantic Analysis