THEORY OF COMPILATION

LECTURE 12

STATIC ANALYSIS
You are here

Source text

Compiler

Lexical Analysis

Syntax Analysis

Semantic Analysis

IR Optimization

Code Generation

Executable code
Static Program Analysis

• Can automatically **prove** interesting properties
 ‣ absence of null pointer dereferences, numerical assertions, termination, absence of data races, information flow, ...

• Nice combination of **math** and **system** building
 ‣ combines program semantics, data structures, discrete math, logic, parallelism, decision procedures, ...
Static Program Analysis

- No need to run the program!
 - No concrete input needed!
Plan for Today

- We will learn a generic analysis technique called **Abstract Interpretation**
 - and understand the **guarantees** it provides

- We will apply it to two domains of interest:
 - Numerical
 - Pointers
Abstract Interpretation

- **Interpretation**: run the program on a concrete input and produce concrete output.

- **Abstract Interpretation**: run the program on an abstract input value. The output is an abstraction of the set of reachable states.
Concrete Semantics

• WHILE language
 ‣ Syntax:
 \[S \rightarrow x := E \mid S ; S \mid \text{skip} \]
 \[\mid \text{if } E \text{ then } S \text{ else } S \]
 \[\mid \text{while } E \text{ do } S \]
 \[E \rightarrow x \mid E \Diamond E \]
 \[\Diamond \in \{+, -, *, /, =, \neq, <, >, \leq, \geq\} \]
Denotational Semantics

• $\sigma : \text{Var} \rightarrow \mathbb{Z}$
 ▶ A state of the program
 (also called a store)

• Σ — the set of all such states

• $\llbracket s \rrbracket : \Sigma \rightarrow \Sigma$
 ▶ $\llbracket s \rrbracket \sigma$ is the state resulting from σ after executing the statement s
Denotational Semantics

- $\llbracket x := e \rrbracket \sigma = \sigma[x \mapsto \llbracket e \rrbracket \sigma]$
- $\llbracket s_1 ; s_2 \rrbracket \sigma = \llbracket s_2 \rrbracket (\llbracket s_1 \rrbracket \sigma)$
- $\llbracket \text{if } e \text{ then } s_1 \text{ else } s_2 \rrbracket \sigma =$
- $\llbracket \text{while } e \text{ do } s \rrbracket \sigma =$

$S \rightarrow x := E \mid S ; S \mid \text{skip}$
$\mid \text{if } E \text{ then } S \text{ else } S$
$\mid \text{while } E \text{ do } S$

$E \rightarrow x \mid E \Diamond E$
Denotational Semantics

- $[x := e] \sigma = \sigma[x \mapsto [e] \sigma]$
- $[s_1 ; s_2] \sigma = [s_2]([s_1] \sigma)$
- $[\text{if } e \text{ then } s_1 \text{ else } s_2] \sigma = \begin{cases} [s_1] \sigma & \text{if } [e] \sigma = \text{true} \\ [s_2] \sigma & \text{if } [e] \sigma = \text{false} \end{cases}$
- $[\text{while } e \text{ do } s] \sigma =$
Denotational Semantics

- $\llbracket x := e \rrbracket_\sigma = \sigma[x \mapsto \llbracket e \rrbracket_\sigma]$
- $\llbracket s_1 ; s_2 \rrbracket_\sigma = \llbracket s_2 \rrbracket(\llbracket s_1 \rrbracket_\sigma)$
- $\llbracket \text{if } e \text{ then } s_1 \text{ else } s_2 \rrbracket_\sigma = \begin{cases} \llbracket s_1 \rrbracket_\sigma & \text{if } \llbracket e \rrbracket_\sigma = \text{true} \\ \llbracket s_2 \rrbracket_\sigma & \text{if } \llbracket e \rrbracket_\sigma = \text{false} \end{cases}$
- $\llbracket \text{while } e \text{ do } s \rrbracket_\sigma = \begin{cases} \sigma & \text{if } \llbracket e \rrbracket_\sigma = \text{false} \\ \llbracket \text{while } e \text{ do } s \rrbracket_\sigma & \text{if } \llbracket e \rrbracket_\sigma = \text{true} \end{cases}$
Denotational Semantics

- \([x := e] \sigma = \sigma[x \mapsto [e] \sigma]\)

- \([s_1 ; s_2] \sigma = [s_2]([s_1] \sigma)\)

- \([\text{if } e \text{ then } s_1 \text{ else } s_2] \sigma = \begin{cases} [s_1] \sigma & \text{if } [e] \sigma = \text{true} \\ [s_2] \sigma & \text{if } [e] \sigma = \text{false} \end{cases}\)

- \([\text{while } e \text{ do } s] \sigma = \begin{cases} \sigma & \text{if } [e] \sigma = \text{false} \\ ?? & \text{if } [e] \sigma = \text{true} \end{cases}\)
Galois Connection

Concrete State Space

Abstract State Space

sets of stores \(\rightarrow \) descriptions of sets of stores

\(\alpha \)

\(\gamma \)
Galois Connection

Concrete State Space

Abstract State Space

\[\alpha \]

sets of stores \(\rightarrow \)
descriptions of sets of stores \(\leftarrow \gamma \)
Galois Connection

Concrete State Space

Abstract State Space

sets of stores

descriptions of sets of stores

α

γ

α
Galois Connection

Concrete State Space

Abstract State Space

sets of stores

descriptions of sets of stores
Galois Connection

Concrete State Space

Abstract State Space

sets of stores

γ

α

descriptions of sets of stores

α

γ

α

γ
Galois Connection

• Lattices C and A

• Functions $\alpha : C \rightarrow A$ and $\gamma : A \rightarrow C$

\[\forall c \in C, \ a \in A. \quad \alpha(c) \sqsubseteq a \iff c \sqsubseteq \gamma(a) \]

• Equivalently,

\[\alpha(\gamma(a)) \sqsubseteq a \land c \sqsubseteq \gamma(\alpha(c)) \]
Galois Connection

Concrete State Space

Abstract State Space

\[\alpha(\gamma(a)) \subseteq a \land c \subseteq \gamma(\alpha(c)) \]
Abstract Domain — Example

Concrete State Space

Abstract State Space

\[C = \mathcal{P}(\mathbb{Z}) \]
Abstraction Function — Example

• \(\alpha : \mathcal{P}(\mathbb{Z}) \rightarrow \{\bot, 0, +, –, \top\} \)

• It is useful to define an auxiliary function \(\beta \)

 \[\beta : \mathbb{Z} \rightarrow \{\bot, 0, +, –, \top\} \]

 \[\alpha(S) = \bigsqcup \{ \beta(\sigma) \mid \sigma \in S \} \]
Abstract Interpretation

- Back to our program analysis:
 - A will be our domain lattice, also called abstract domain.
 - Every operation in our concrete semantics will have corresponding abstract semantics.

\[
\sigma^# \in A \quad \text{abstract state}
\]

\[
[\sigma]^# : A \rightarrow A \quad \text{abstract transformer}
\]
Abstract Semantics — Example

- WHILE program with k variables v_1, \ldots, v_k
 - $\alpha : \mathcal{P}(\mathbb{Z}^k) \rightarrow \{\bot, 0, +, -, \top\}^k$

- $\llbracket x := e \rrbracket_{\sigma} = \sigma[x \mapsto \llbracket e \rrbracket_{\sigma}]$

- $\llbracket s_1 ; s_2 \rrbracket_{\sigma} = \llbracket s_2 \rrbracket_{\sigma}(\llbracket s_1 \rrbracket_{\sigma})$
Abstract Semantics

\[\sigma \xrightarrow{[s]^\#} \sigma' \]

\[\alpha \]

\[\sigma \xrightarrow{[s]} \sigma' \]
Abstract Semantics

\[\sigma \rightarrow [s] \rightarrow \sigma' \]

\[\alpha \rightarrow [s] \rightarrow \alpha \]

\[\sigma \rightarrow \sigma' \]
Abstract Semantics

\[\sigma \xrightarrow{\sigma'} \]

\[\alpha \]

\[\alpha([s](\sigma)) \subseteq [s]^#(\alpha(\sigma)) \]
Abstract Semantics — Example

1: \(x := 5; \)
2: \(y := 7; \)
3: while (i \geq 0) do
 (4: \(y := y + 1; \)
 5: \(i := i - 1 \)
)
4: \(x := 5 \)
5: \(y := 7 \)
6: \(i \geq 0 \)
Abstract Semantics — Example

1: \(x := 5; \)
2: \(y := 7; \)
3: while \((i \geq 0)\) do
 (4: \(y := y + 1; \)
 5: \(i := i - 1 \)
)
6:

\[
\begin{array}{ccc}
x & y & i \\
Z & Z & Z \\
\end{array}
\]

\[
\begin{array}{ccc}
x & y & i \\
T & T & T \\
\end{array}
\]

\[
\begin{array}{ccc}
x & y & i \\
5 & Z & Z \\
\end{array}
\]

\[
\begin{array}{ccc}
x & y & i \\
5 & 7 & Z \\
\end{array}
\]

\[
\begin{array}{ccc}
x & y & i \\
5 & 7 & N \\
\end{array}
\]
Abstract Semantics — Example

1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (4: y := y + 1;
 5: i := i - 1)
6:
Abstract Semantics — Example

1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (x := 5
 y := y + 1;
 i := i - 1
)
4: y := y + 1;
5: i := i - 1
6: x := 5;
Abstract Semantics — Example

1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (4: y := y + 1;
 5: i := i − 1)
6:
Important Point

Note that abstract transformers are defined per **programming language** and **abstract domain**, once and for all, and **not** per program!

Abstract transformers define the new formal abstract semantics of the language.

This means that **any program** in that programming language can be analyzed using the **same transformers**
1: x := 5;
2: y := -1;
3: while (i ≥ 0) do
 (4: y := y + 1;
 5: i := i - 1
)
6:
Transformer Soundness

1: $x := 5$;
2: $y := -1$;
3: while ($i \geq 0$) do
 (4: $y := y + 1$;
 5: $i := i - 1$
)
6:
Transformer Soundness

1: \(x := 5; \)
2: \(y := -1; \)
3: **while** \(i \geq 0 \) **do**
 4: \(y := y + 1; \)
 5: \(i := i - 1 \)
4: \[x \quad y \quad i \]
 \[5 \quad -1 \quad \mathbb{Z} \]
5: **while** \(i \geq 0 \) **do**
 4: \(y := y + 1; \)
 5: \(i := i - 1 \)
6: \[x \quad y \quad i \]
 \[5 \quad 0 \quad \mathbb{N} \]
Transformer Soundness

1: x := 5;
2: y := -1;
3: while (i ≥ 0) do
 (y := y + 1;
 i := i - 1)
4: y := y + 1
5: i := i - 1
6:
1: \(x := 5; \)
2: \(y := -1; \)
3: \(\textbf{while} (i \geq 0) \textbf{do} \)
 \((\)
4: \(y := y + 1; \)
5: \(i := i - 1 \)
 \() \)
6: \(x \ y \ i \\
 5 \ -1 \ \mathbb{Z} \\
 + \ -\ + \
\)
A sound abstract transformer should always — for every state — produce results that are a superset of what a concrete transformer would produce.
A sound abstract transformer should always — for every state — produce results that are a superset of what a concrete transformer would produce.
How about this?

1: \(x := 5; \)
2: \(y := -1; \)
3: \(\text{while } (i \geq 0) \text{ do} \)
 (\(\)
4: \(y := y + 1; \)
5: \(i := i - 1 \)
)
6:

\[
\left[y := y + 1\right] \sigma = \sigma [y \mapsto \top]
\]
How about this?

This transformer is **sound**, but it’s not **precise**.

\[
\llbracket y := y + 1 \rrbracket^\# \sigma^\# = \sigma^\#[y \mapsto \top]
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>N</td>
</tr>
</tbody>
</table>

\[
\llbracket\rrbracket
\]

\[
\downarrow
\]

\[
y := y + 1
\]

\[
\llbracket \rrbracket^#
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>N</td>
</tr>
</tbody>
</table>

\[
\llbracket\rrbracket
\]

\[
\downarrow
\]

\[
y := y + 1
\]

\[
\llbracket \rrbracket^#
\]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>−</td>
<td>+</td>
</tr>
</tbody>
</table>
Transformer Precision

This abstract state:

represents infinitely many concrete states where y is always 0, including:

If we perform $y := y + 1$ on any of these concrete states, we will always get states where y is always positive, such as:

It would therefore be sound to represent them using this abstract state:
Transformer Precision

This abstract state:

represents infinitely many concrete states where \(y \) is always 0, including:

If we perform \(y := y + 1 \) on any of these concrete states, we will always get states where \(y \) is always positive, such as:

It would therefore be sound to represent them using this abstract state:

However, the abstract transformer produces an abstract state where \(y \) can be any value:
Best Abstract Transformer

• It is easy to be sound and imprecise: always produce \top

• A good transformer is both sound and precise. If we lose precision, it needs to be clear why and where:
 ▸ sometimes, computing the most precise transformer (also called the best transformer) is impossible
 ▸ for efficiency reasons, we may compromise for a transformer that is “good enough”
Let’s prove a property!

1: \(x := 5; \)
2: \(y := 7; \)

3: while (\(i \geq 0 \)) do
 (
 4: \(y := y + 1; \)
 5: \(i := i - 1 \)
 6:)

7: assert \(0 \leq x + y \)
Let’s prove a property!

1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (
 4: y := y + 1;
 5: i := i - 1
 6:)
7: assert 0 ≤ x + y
Let’s prove a property!

1: \(x := 5 \);
2: \(y := 7 \);
3: \(\text{while } (i \geq 0) \text{ do } \)
 (4: \(y := y + 1 \);
 5: \(i := i - 1 \)
 6:)
7: \(\text{assert } 0 \leq x + y \)

\[[x + y]^{\sigma} = + \]
Coming Up

Recap & More
THEORY OF COMPILATION

LECTURE 12

Complicated
ADVANCED
STATIC ANALYSIS
Exam

★ 20% Compiler Phases
★ 40% Syntax, Semantics, Code generation
★ 10% Optimizations
★ 30% Static Analysis
Reminder:

Galois Connection

\[\alpha(\gamma(a)) \subseteq a \land c \subseteq \gamma(\alpha(c)) \]
Abstract Domain

Concrete State Space

Abstract State Space

$C = \mathcal{P}(\mathbb{Z})$

\subseteq

α

γ

Reminder:
Reminder:

Abstract Semantics

\[\alpha(\llbracket s \rrbracket(\sigma)) \subseteq \llbracket s \rrbracket^\#(\alpha(\sigma)) \]
1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (4: y := y + 1;
 5: i := i - 1
)
7: assert 0 ≤ x + y

Proving Properties

Reminder:

[[x + y]]^σ = +
Numerical Domains
Intervals Domain

constants

c

$\mathbb{Z} \cup \{T\}$

signs

$+, -, 0$
Intervals Domain

constants

\(c \in \mathbb{Z} \cup \{ \top \} \)

signs

\(+, -, 0\)

intervals

\([a, b]\) with

\((\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{\infty\})\)
Instead of abstracting variable values using the sign of the value, we will abstract them using an interval.
Intervals Domain

...
1: \(x := 5; \)
2: \(y := 7; \)
3: \(\textbf{while } (i \geq 0) \textbf{ do } \)
 (\quad
4: \quad y := y + 1;
5: \quad i := i - 1
6: \quad)
7: \textbf{assert } 0 \leq y - x
1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (4: y := y + 1;
5: i := i − 1
6:)
7: assert 0 ≤ y − x
1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (4: y := y + 1;
 5: i := i - 1
 6:)
7: assert 0 ≤ y - x
1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
(
4: y := y + 1;
5: i := i - 1
6:)
7: assert 0 ≤ y - x
Let the iterations begin!

1: x := 5;
2: y := 7;
3: while (i ≥ 0) do
 (4: y := y + 1;
 5: i := i - 1
)
7: assert 0 ≤ y - x
Cannot Reach a Fixed Point

• With the interval abstraction we could not reach a fixed point.
 ‣ The domain has infinite height.

• What should we do?
 ‣ Introduce a special operator that would replace the “join” operation in our abstract semantics
 ‣ It is a hack to ensure termination, at the expense of precision
Widening

- $\triangledown : A \times A \rightarrow A$
 - $x \sqcup y \subseteq x \triangledown y$
Widening

- $\nabla: A \times A \rightarrow A$
 - $x \sqcup y \subseteq x \nabla y$

Example — for intervals

- $x \nabla \bot = \bot \nabla x = x$
- $[a_1, b_1] \nabla [a_2, b_2] = [c, d]$

 $$c = \begin{cases}
 a_1 & \text{if } a_1 \leq a_2 \\
 -\infty & \text{if } a_1 > a_2
 \end{cases}$$
 $$d = \begin{cases}
 b_1 & \text{if } b_2 \leq b_1 \\
 \infty & \text{if } b_2 > b_1
 \end{cases}$$
1: \(x := 5;\)
2: \(y := 7;\)
3: \textbf{while} \(i \geq 0\) \textbf{do} \quad \begin{align*}
4: & \quad y := y + 1; \\
5: & \quad i := i - 1 \\
6: & \end{align*}
7: \textbf{assert} \ 0 \leq y - x

\begin{tabular}{c|c|c|c|c|}
\hline
\textbf{x} & \textbf{y} & \textbf{i} & \\
\hline
[5,5] & [7,7] & \top \\
\hline
\end{tabular}
1: \(x := 5; \)
2: \(y := 7; \)
3: while \(i \geq 0 \) do
 (4: \(y := y + 1; \)
 5: \(i := i - 1 \)
 6:)
7: assert \(0 \leq y - x \)
1: \(x := 5; \)
2: \(y := 7; \)
3: \textbf{while} \((i \geq 0) \) \textbf{do} \\
 (\\
4: \quad y := y + 1; \\
5: \quad i := i - 1 \\
6:) \)
7: \textbf{assert} \(0 \leq y - x \)
Abstraction is not an elephant

- Constant, sign, and interval domain cannot track relationships between variable values.

```plaintext
if ( ... ) (  
    x := 1 ; y := -1
)  
else (  
    x := -1 ; y := 1
)

assert 0 ≤ x + y
```
Abstraction is not an elephant

- Constant, sign, and interval domain cannot track relationships between variable values.

```plaintext
if ( ... ) (  
    x := 1 ; y := -1  
)  
else (  
    x := -1 ; y := 1  
)
assert 0 ≤ x + y

if ( ... )  
    x := 1  
else  
    x := -1;
y := -x;
assert 0 ≤ x + y
```
Variable Relations

• A very useful property, in particular for bounds checking

```plaintext
foo(n) {
    a := new Z[n];
    i := 0;
    j := n - 1;
    while (i < j) do (  
        if (a[i] = 0)  
            a[j] := 1;
        i := i + 1;
        j := j - 1;
    )
}

bar(n) {
    a := new Z[n];
    i := 0;
    j := n - 1;
    while (i < j) do (  
        if (a[i] = 0)  
            then i := i + 1;
        j := j - 1;
        a[i + j] := 2;
    )
}
```
A New Domain

Constants

Signs

Intervals
A New Domain

Constants

Signs

Intervals

Octagons
Octagons Domain

- **Octagon** = a set of inequalities of the form

 \[\pm u_i \leq c \quad \pm u_i \pm u_j \leq c \quad (i \neq j) \]

- **Semantics:**
 intersection of half-planes

 - \(x \leq 1 \)
 - \(x \geq -2 \)
 - \(y \leq 2 \)
 - \(y \geq -1 \)
 - \(-x + y \leq 3 \)
 - \(x + y \leq 2 \)
 - \(-x - y \leq 2 \)
 - \(x - y \leq 1 \)
 - \(y = 2 \)
 - \(y = 2 \)
 - \(x = 1 \)
 - \(x = 1 \)
 - \(y = -1 \)
 - \(y = -1 \)
 - \(x - y = 1 \)
 - \(x - y = 1 \)
 - \(x + y = 3 \)
 - \(x + y = 3 \)
 - \(x = 2 \)
 - \(x = 2 \)
 - \(y = 2 \)
 - \(y = 2 \)
Octagons Domain

- **Octagon** = a set of inequalities of the form

\[\pm \nu_i \leq C \quad \pm \nu_i \pm \nu_j \leq C \quad (i \neq j) \]

- Semantics: intersection of half-planes

 - \(x \leq 1 \)
 - \(x \geq -2 \)
 - \(y \leq 2 \)
 - \(y \geq -1 \)
 - \(-x + y \leq 3 \)
 - \(x + y \leq 2 \)
 - \(-x - y \leq 2 \)
 - \(x - y \leq 1 \)
Octagons Domain

• There is more than one way to represent a single octagonal region.
 ‣ E.g.

\[
\gamma \left(\left\{ \begin{array}{l} x \leq 5 \\ y \leq 7 \end{array} \right\} \right) = \gamma \left(\left\{ \begin{array}{l} x \leq 5 \\ y \leq 7 \\ x + y \leq 12 \end{array} \right\} \right)
\]
Closure for Octagons

• S is a **closed octagon** iff:

 ‣ For any i, j, c, such that $S \Rightarrow v_i + v_j \leq c$, there exists $c' \leq c$ such that $v_i + v_j \leq c' \in S$

 ‣ similarly for $-v_i + v_j \leq c$, $v_i - v_j \leq c$, etc.

 and for $v_i \leq c$

• Canonical representation:

 ‣ Every *(signed)* variable and every pair of *(signed)* variables has exactly one bound (may be ∞)
Order Relation on Octagons

- $S_1 \subseteq S_2$ iff whenever $\pm v_i \pm v_j \leq c \in S_2$, there is a $c' \leq c$ such that $\pm v_i \pm v_j \leq c' \in S_1$

(with same signs of course)
Join for Octagons

- $S_1 \sqcup S_2$ can be computed by taking piecewise maximum of bounds of corresponding inequalities

$$(x \leq 5) \land (x + y \leq 10) \sqcup (x \leq 4) \land (x + y \leq 11)$$

\Downarrow

$$(x \leq 5) \land (x + y \leq 11)$$
Abstract Transformers

• *It’s complicated*...

• A few basic ones:
 ▸ \(x := c \)
 ▸ \(x < c \)
 ▸ \(x := x + c \)
 ▸ \(x := y + c \)
Abstract Transformers

• *It’s complicated*...

• A few basic ones:
 - $x := c$
 - $x < c$
 - $x := x + c$
 - $x := y + c$

• General assignments — $x := e$
 - Approximate by interval arithmetic on e
Polyhedra Domain

constraints are of the following form:

\[c_1 x_1 + c_2 x_2 + \ldots + c_n x_n \leq c \]

the slope can vary

an abstract state is again a conjunction of constraints:

\[x - y \geq -20 \land \]
\[x - 3y \leq 2 \land \]
\[x + y \geq 5 \]

Order, join, transformers: require solving linear equations.
Polyhedra: Example

- McCarthy’s “91 function”

\[
M(n) = \begin{cases}
 n - 10 & \text{if } n > 100 \\
 M(M(n + 11)) & \text{if } n \leq 100
\end{cases}
\]

```python
def m(n):
    c = 1
    while c != 0:
        if n > 100: n -= 10; c -= 1
        else: n += 11; c += 1
    return n
```

```python
def m(n):
    x = y = 0; n_0 = n
    while x <= y:
        if n > 100: n -= 10; x += 1
        else: n += 11; y += 1
    return n
```

Replacing \(c\) by \(1 + y - x\)
Numerical Domains: Summary

Cartesian
- Constants
- Signs
- Intervals

Relational
- Octagons
- Polyhedra
Pointer Analysis
Simple Example

program

\[
\begin{align*}
x & := 5 && \text{S1} \\
\text{ptr} & := & \&x && \text{S2} \\
*\text{ptr} & := 9 && \text{S3} \\
y & := x && \text{S4}
\end{align*}
\]

data flow

- What are the data dependencies in this program?
- **Problem**: just looking at variable names will not give you the correct information
 - After statement S2, program names “x” and “*ptr” are both expressions that refer to the same memory location.
 - We say that \texttt{ptr points-to} \texttt{x} after statement S2.
- In a C-like language that has pointers, we must know the \textit{points-to relation} to be able to determine dependencies correctly
Program Model

- Extend WHILE with statements that deal with pointers:
 - **address**: \(x := \&y \)
 - **copy**: \(x := y \) (regular assignment)
 - **load**: \(x := *y \)
 - **store**: \(*x := y \)

- For now: no heap, no function calls. Allowed types are \(\mathbb{Z}, \mathbb{Z}^* \) (pointer to number), \(\mathbb{Z}^{**} \), ...
Points-to Relation

• Directed graph:
 ‣ Nodes are program variables (+ special node for null)
 ‣ Edge (a,b) — variable a points-to variable b

• Of course, points-to is different at different program locations
Points-to Relation

• Directed graph:
 ▸ Nodes are program variables (+ special node for null)
 ▸ Edge (a,b) — variable a points-to variable b

• Out-degree may be > 1
 if there are multiple paths

What does x point to here?
Points-to Relation

- As an abstract domain (a lattice):
 - Nodes are fixed per program; can think of it as a power-set domain of possible edges.
 - \(\bot \) is a graph with no edges.
 - \(\sqsubseteq \) is the subgraph relation (edge subset)
 - \(\sqcup \) is obtain by union of edges
Points-to Analysis: Two Flavors

• Flow Sensitive
 ‣ Based on abstract interpretation / dataflow
 ‣ Can examine behavior at different locations

• Flow Insensitive
 ‣ Computes a single points-to relation for the entire program
 ‣ Works by generating constraints and solving them
 ‣ (Andersen’s algorithm / Steengards algorithm)
Points-to: Abstract Semantics

\[[s] \# G = G' \]
Points-to: Abstract Semantics

\[[s] \# G = G' \]

\[
\begin{align*}
x &: \& y \\
G' &= G \text{ with } pt'(x) \leftarrow \{y\}
\end{align*}
\]

\[
\begin{align*}
x &: y \\
G' &= G \text{ with } pt'(x) \leftarrow pt(y)
\end{align*}
\]

\[
\begin{align*}
x &: *y \\
G
\end{align*}
\]

\[
\begin{align*}
*x &: y \\
G
\end{align*}
\]
Points-to: Abstract Semantics

\[[s] \# G = G' \]

- **x := &y**
 - \(G' = G \) with \(\text{pt}'(x) \leftarrow \{y\} \)

- **x := y**
 - \(G' = G \) with \(\text{pt}'(x) \leftarrow \text{pt}(y) \)

- **x := *y**
 - \(G' = G \) with \(\text{pt}'(x) \leftarrow \bigcup \{ \text{pt}(a) \mid a \in \text{pt}(y) \} \)

- ***x := y**
 - \(G' = G \) with \(\text{pt}'(x) \leftarrow \bigcup \{ \text{pt}(a) \mid a \in \text{pt}(y) \} \)
Points-to: Abstract Semantics

\[[s] \# G = G' \]

\[x := \& y \]
\[G' = G \text{ with } pt'(x) \leftarrow \{ y \} \]

\[x := y \]
\[G' = G \text{ with } pt'(x) \leftarrow pt(y) \]

\[x := * y \]
\[G' = G \text{ with } pt'(x) \leftarrow \bigcup \{ pt(a) \mid a \in pt(y) \} \]

\[*x := y \]
\[G' = G \text{ with } pt'(a) \leftarrow pt(y) \text{ for all } a \in pt(x) \]
Points-to: Abstract Semantics

\[[s] # G = G' \]

- **x := &y**
 \[G' = G \text{ with } pt'(x) \leftarrow \{y\} \]

- **x := y**
 \[G' = G \text{ with } pt'(x) \leftarrow pt(y) \]

- **x := *y**
 \[G' = G \text{ with } pt'(x) \leftarrow U\{pt(a) \mid a \in pt(y)\} \]

- ***x := y**
 \[G' = G \text{ with } \forall a \in pt(x), pt'(a) \leftarrow pt(y) \]

strong updates

weak update (why?)
Dynamic Allocation

• What to do with \(x := \text{new Z[...]} \) ?
 ‣ Program can create an unbounded number of objects
 ‣ Need some static naming scheme for dynamically allocated objects

● AbsObj

● Single name for the entire heap
 \(\text{AbsObj} = \{ \text{H} \} \)

● Type based static names
 \(\text{AbsObj} = \{ T \mid T \text{ is a type in the program} \} \)

● Name based on static allocation site
 \(\text{AbsObj} = \{ \mu \mid \text{stmt}(\mu) \text{ is } p := \text{newArray}^{\mu} a \} \)
Dynamic Allocation

• AbsObj — set of abstract object names
 ▸ Single name for the entire heap
 AbsObj = \{ H \}
 ▸ Type-based static names
 AbsObj = \{ T \mid T \text{ is a type in the program} \}
 ▸ Name based on static allocation site
 AbsObj = \{ \mu \mid \text{statement } \mu: p := \text{new } Z[a] \}
Dynamic Allocation: Semantics

• ** Basically:** model every “new” as “address of”

```
1: p := new Z[5];
2: q := new Z[5];
3: if (p = q) then
4:    z := p
5: else
6:    z := q
```

```
1: p := &A1;
2: q := &A2;
3: if (p = q) then
4:    z := p
5: else
6:    z := q
```
Dynamic Allocation: Semantics

- **Basically**: model every “new” as “address of”

1: p := new Z[5];
2: q := new Z[5];
3: if (p = q) then
4: z := p
5: else
6: z := q

- **Conservative**: may result in spurious “may point to” entries; but “must not point to” results are always sound.

1: p := &A1;
2: q := &A2;
3: if (p = q) then
4: z := p
5: else
6: z := q
Points-to Analysis: Example

1: w1 := &a1;
2: w2 := &a2;
3: q := new Z[5];
4: r := new Z[5];
5: *w1 := r;
6: if (...) then
7: p := w1
8: else
9: p := w2;
10: *p := q

a1, a2, q, r : Z*
w1, w2, p : Z**
Aliasing Analysis

Derived from result of point-to analysis

1: \(p := \text{new } Z[5]; \)
2: \(q := \text{new } Z[5]; \)
3: if \(p = q \) then
4: \(z := p \)
5: else
6: \(z := q \)

\(z \) and \(p \) may not alias
\(q \) and \(p \) may not alias
\(z \) and \(q \) may alias
Example: Pointers + Sign

1: a := 0;
2: b := 0;
3: q := &a;
4: *q := *q + 1
5: assert a + b > 0

Abstract Domain:

Points-to × Signs

⟨ q → a , a b + − ⟩
Example: Aliasing + Available Expressions

1: a := *q + 4 * c;
2: b := 0;
3: *p := 1;
4: b := *q + 4 * c
Example: Aliasing + Available Expressions

1: a := *q + 4 * c;
2: b := 0;
3: *p := 1;
4: b := *q + 4 * c

Optimization is valid:
p and q are not aliased
Recap

• Lexical analysis
 – regular expressions identify tokens (“words”)

• Syntax analysis
 – context-free grammars identify the structure of the program (“sentences”)

• Contextual (semantic) analysis
 – type checking defined via typing judgements
 – can be encoded via attribute grammars

• Syntax directed translation
 – attribute grammars

• Intermediate representation
 – many possible IRs
 – generation of intermediate representation
Journey inside a compiler

```
float initial, rate;
position = initial +
rate * 60
```

```
<FLOAT> <ID,"initial"> <COMMA> <ID,"rate"> <SEMI>
<ID,"position"> <=> <ID,"initial"> <+> <ID,"rate"> <*> <60>
```
Journey inside a compiler

\[(\text{ID,position}) \leftrightarrow (\text{ID,initial}) \leftrightarrow (\text{ID,rate}) \leftrightarrow 60\]

\[
\begin{align*}
\text{AST} &= \text{<ID,position>} \\
& \quad + \text{<ID,initial>} \\
& \quad \times \text{<ID,rate>} \\
& \quad 60
\end{align*}
\]
Journey inside a compiler

Symbol Table

<table>
<thead>
<tr>
<th>symbol</th>
<th>type</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>position</td>
<td>float</td>
</tr>
<tr>
<td>2</td>
<td>initial</td>
<td>float</td>
</tr>
<tr>
<td>3</td>
<td>rate</td>
<td>float</td>
</tr>
</tbody>
</table>

Annotated AST

```
<id,1> = <id,2> + <id,3> * inttofloat 60
```
Journey inside a compiler

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3

Intermediate Representation

t1 = inttofloat(60)
t2 = id3 * t1
t3 = id2 + t2
id1 = t3
Journey inside a compiler

Intermediate Representation

\[
\begin{align*}
t1 &= \text{inttofloat}(60) \\
t2 &= \text{id3} \times t1 \\
t3 &= \text{id2} + t2 \\
id1 &= t3
\end{align*}
\]

Optimized

\[
\begin{align*}
t1 &= \text{id3} \times 60.0 \\
id1 &= \text{id2} + t1
\end{align*}
\]
Journey inside a compiler

Optimized

t1 = id3 * 60.0
id1 = id2 + t1

Assembly

LDF R2, id3
MULF R2, R2, #60.0
LDF R1, id2
ADDF R1, R1, R2
STF id1, R1
You Have Reached
Your Destination