You are here

Up Until Now

Today
- Dataflow analysis
- Lattices
- Chaotic Iterations
- Monotone framework (for dataflow analysis)
- A few example analyses

Static Analysis

“The algorithmic discovery of properties of a program by inspection of its source text”

Reason statically — at compile time — about the possible runtime behaviors of a program
- Does not have to literally be the source text, just means w/o running it
- In a compiler, we mostly use IR
Static Analysis

- What for..?

```
x = ?
if (x > 0) {
  y = 42;
} else {
  y = 73;
  foo();
} assert (y == 42);
```

- Bad news: problem is generally undecidable

Static Analysis

- Central idea: use approximation

```
x = ?
if (x > 0) {
  y = 42;
} else {
  y = 73;
  foo();
} assert (y == 42);
```

- Conservative static analysis: assertion may be violated

Over-Approximation

```
x = ?
if (x > 0) {
  y = 42;
} else {
  y = 73;
  foo();
} assert (y == 42);
```

- Lose precision only when required
- Understand where precision is lost

/* My Static Analyzer */
main(...) {
 printf("assertion may be violated\n");
}

Precision
Static Analysis

- Formalize software behavior in a mathematical model (semantics)
- Prove properties of the mathematical model
 - Automatically, typically with approximation of the formal semantics
- Develop theory and tools for program correctness and robustness

Static Analysis

- Spans a wide range from type checking to full verification
- General safety specifications
- Absence of resource leaks
- Concurrency correctness conditions (e.g., progress, race-freedom)
- Correct use of libraries (e.g., initialization)
- Under-approximations useful for bug-finding, test-case generation, ...

Static Analysis: Techniques

- Dataflow analysis
- Constraint-based analysis
- Type and effect systems
- Abstract Interpretation
- ...

Example: Reaching Definitions

- Concept of definition and use:
 \[x = y + z \]
 \(x \) is a definition of \(x \)
 \(y \) is a definition of \(y \)
 \(z \) is a definition of \(z \)
- A definition reaches a use if
 \(y \) value written by definition...
 \(z \) may be read by use

Example: Reaching Definitions

```
1 y := x
2 z := 1
3 while (y > 0) {
4   y := y - 1
5 } 
6 y := 0
7 return y + z
```
(adapted from Nielson, Nielson & Hankin)
Example: Reaching Definitions

1. \(y := x \)
2. \(z := 1 \)
3. While \((y > 0)\) {
 4. \(z := z \times y \)
 5. \(y := y - 1 \)
4. \(y := 0 \)
5. Return \(y + z \)

(adapted from Nielson, Nielson & Hankin)
Time for Some Math

Partial Orders

- Set P
- Binary relation \leq such that $\forall x, y, z \in P$:
 - $x \leq x$ (reflexive)
 - $x \leq y$ and $y \leq x$ implies $x = y$ (antisymmetric)
 - $x \leq y$ and $y \leq z$ implies $x \leq z$ (transitive)
- Can use partial order to define:
 - Upper and lower bounds
 - Least upper bound
 - Greatest lower bound

Upper Bounds

- For $S \subseteq P$:
 - $x \in P$ is an upper bound of S if $\forall y \in S. y \leq x$
 - $x \in P$ is the least upper bound of S if
 - x is an upper bound of S, and
 - $x \leq y$ for all upper bounds y of S
 - \lor - join, least upper bound, lub, supremum, sup
 - \lor is the least upper bound of S
 - $x \lor y$ is the least upper bound of $\{x, y\}$
 - Often written as \sqcup as well

Lower Bounds

- For $S \subseteq P$:
 - $x \in P$ is a lower bound of S if $\forall y \in S. x \leq y$
 - $x \in P$ is the greatest lower bound of S if
 - x is a greatest lower bound of S, and
 - $y \leq x$ for all greatest lower bounds y of S
 - \land - meet, greatest lower bound, glb, infimum, inf
 - \land is the greatest lower bound of S
 - $x \land y$ is the greatest lower bound of $\{x, y\}$
 - Often written as \sqcap as well

Covering

- $x < y$ if $x \leq y$ and $x \neq y$
- x is covered by y (y covers x) if
 - $x < y$, and
 - $x \leq z \implies x = z$
- Conceptually,
 - y covers x if there are no elements between x and y
Lattices

- If \(x \lor y \) and \(x \land y \) exist for all \(x, y \in P \) then \(P \) is a lattice
- If \(\lor S \) and \(\land S \) exist for all \(S \subseteq P \) then \(P \) is a complete lattice
- Theorem: all finite lattices are complete.
- Example of a lattice that is not complete:
 - Integers \(\mathbb{Z} \)
 - \(\lor \) = max, \(\land \) = min
 - But \(\lor \mathbb{Z} \) and \(\land \mathbb{Z} \) do not exist \(\Rightarrow \) not complete
 - Conversely, \(\mathbb{Z} \cup \{\infty, -\infty\} \) is a complete lattice

Example

- \(P = \{000, 001, 010, 011, 100, 101, 110, 111\} \) (standard boolean lattice, also called hypercube)
- \(x \leq y \) iff \((x \& y) = x \) where \(\& \) is bitwise ‘and’

Top and Bottom

- Greatest element of \(P \) (if it exists) is top (\(\top \))
- Least element of \(P \) (if it exists) is bottom (\(\bot \))

Product Lattices

- Given two lattices \(L \) and \(Q \), the product can easily be made a lattice:
 \[(l_0, q_0) \subseteq (l_1, q_1) \Rightarrow l_1 \subseteq l_0 \text{ and } q_1 \subseteq q_0. \]
- For vectors of \(L \), defining a lattice is also easy
 \[(l_0, l_1, \ldots, l_n) \subseteq (l_0, l_1, \ldots, l_1) \Rightarrow \forall i \in [0, L], l_i \subseteq l_i \]

Lattices of Program Properties

- Properties of interest can often be arranged into a lattice
- Example: Lattices of values
 - odd even
 - 1 2 3
 - When the value of each variable is a lattice, the state of the program is a product lattice of the states of all variables.
Example

\[y := 0; \]
while (x < 10) {
 \[x := x + 1; \]
 \[y := y + 2; \]
}

Could be odd or even

\[x = \begin{cases}
\text{odd} & \text{if } x \\
\text{even} & \text{otherwise}
\end{cases} \]

Is \(y \) guaranteed to be even?

A lattice of predicates
- \(\langle x = (\bot, \text{even}, \text{odd}, \top), y = (\bot, \text{even}, \text{odd}, \top) \rangle \)
- \(x: x \in \text{even}, y: y \in \text{odd}, z: z \in \text{even} \)
- Product lattice from individual lattices, one per variable

Lattices of program properties
- Lattice does not have to carry a direct relationship to program values
- Example: Can an object escape from a function?

```
can-escape
```

Computing the Transfer Function
- We must hard-code a transfer function specific to the lattice
 - Occasionally, there would be a trade-off between how precise the transfer functions are and how easy it is to compute them
- We can build lattices for arbitrary facts about the program
 - Need to make sure our transfer functions are monotonic (see later why)

From CFG to Equations
- For every block, define state variables \(\text{in} \) and \(\text{out} \)
 - \(\text{out}_j = T(\text{in}_i) \)
- If \(i \) is the only predecessor of \(j \):
 - \(\text{in}_j = \text{out}_i \)
- Use join (\(\sqcup \)) when multiple edges enter the same block:
 - \(\text{in}_j = \text{out}_i \sqcup \text{out}_k \)

```
return y
```

From CFG to Equations
- In the case of Reaching Definitions:
 - \(\text{out}_i = \text{in}_i \setminus (\{x^*, i\} \cup \{x, i\}) \)
 - where
 - \(x \) is the variable assigned to in \(i \)
 - \(\{x, i\} = \{x, i \mid i \in \text{Lab}\} \)

```
return y
```
Input/output Sets

1: \textit{y} := x
2: \textit{z} := 1
3: while (\textit{y} > 0) {
 4: \textit{z} := \textit{z} \ast \textit{y}
 5: \textit{y} := \textit{y} – 1
5: return \textit{y} + \textit{z}

Transfer Functions

1: \textit{y} := x
2: \textit{z} := 1
3: while (\textit{y} > 0) {
 4: \textit{z} := \textit{z} \ast \textit{y}
 5: \textit{y} := \textit{y} – 1
5: return \textit{y} + \textit{z}

System of Equations

1: \textit{y} := x
2: \textit{z} := 1
3: while (\textit{y} > 0) {
 4: \textit{z} := \textit{z} \ast \textit{y}
 5: \textit{y} := \textit{y} – 1
5: return \textit{y} + \textit{z}

Solving the Equations

\textbullet\ Fixed Point Problem
 \textbullet\ Given a function \(F : L \rightarrow L \), find \(x \in L \)
 such that \(F(x) = x \)

\textbullet\ With transfer functions, you will commonly find that \(\top \) is one such solution...
 \textbullet\ We would like the most precise solution

Knaster-Tarski Theorem

\textbullet\ Definition. the least fixed point \(x_L \) is a fixed point \(F(x_L) = x_L \)
 such that for any \(x \), if \(F(x) = x \), then \(x_L \leq x \)
Kleene Fixed-point Theorem

Order Preserving (Monotonic) Function:
\[x \subseteq y = f(x) \subseteq f(y) \]

Now, let \(s_0 \) be the least fixed point of \(f: L \to L \)
- \(\mathbb{1} \cup s_0 \)

Now, let \(s_0 \) be a and \(s_1 = f(s_0) \)
- By induction, \(x, L, S \)
- Also, the chain \(s_1 \) is a ascending chain
- If \(L \) has no infinite ascending chains, sooner or later \(s_1 = s_2 = s_3 \)

Same trick works for greatest fixed point!
- But then you have to start with \(s_0 = 1 \)

Chains

- A set \(S \subseteq L \) is a chain if \(\forall x, y \in S. y \subseteq x \) or \(x \subseteq y \)

- \(L \) has no infinite chains if every chain in \(L \) is finite

Chaotic Iterations

- To avoid recomputing values that do not change:
 - Keep a work list of CFG nodes to update
 - Pick one node at a time
 - Update \(\text{out}(u) \) from \(\text{in}(u) \)
 - If \(\text{out}(u) \) has changed, recompute \(\text{in}(v) \) for all successors \(v \) of \(u \) and add \(v \) to the work list

Using Reaching-Definitions Information

- Remember: this is an over-approximation
 - a definition may be reaching use
 - we may err, but always on the safe side
 - we may say that a definition may reach a program point when it doesn’t
 - we never miss a definition that may reach a point
 - usage examples
 - detecting possible use before definition
 - useful for debugging
 - very simple constant folding
For each program point, find which expressions must have already been computed, and not later modified, on all paths leading to that program point.

```plaintext
1: x := a + b
2: y := a * b
3: while (y > a + b) {
   4: a := a + 1
   5: x := a + b
}
```

Some Required Notation

- Classes of expressions:
 - \(\text{AExp} \) – arithmetic expressions
 - \(\text{BExp} \) – boolean expressions
- \(\text{FV} \): \((\text{BExp} \cup \text{AExp}) \rightarrow \text{Var}\)
 - Variables used in an expression
- \(\text{AExp}(a) = \) all (non-atomic) arithmetic sub-expressions of an arithmetic expression \(a \)
- \(\text{AExp}(b) \) for a boolean expression \(b \)

Available Expressions Analysis

- Property space
 - \(\text{in}, \text{out}: \text{Lab} \rightarrow (\exists \text{AExp}) \)
 Map a label to set of arithmetic expressions available at (before, after) that label
- Dataflow equations
 - Flow equations – how to join incoming dataflow facts
 - Effect equations – given an input set of expressions \(S \), what is the effect of a statement

- \(\text{in}(\ell) = \emptyset \) when \(\ell \) is the initial label
- \(\cap \{ \text{out}('\ell') \mid '\ell' \in \text{pred}(\ell) \} \) otherwise

Available Expressions Analysis

- Statement
 - \(\text{state} = \{ \begin{array}{l}
 x := a \\
 \text{skip} \\
 \text{cond}
 \end{array} \}
 \text{out} = \{ \begin{array}{l}
 x \in \text{AExp} | x \in \text{FV}(a') | x \in \text{AExp}(a') | x \in \text{FV}(a') \\
 x \\
 x \neq \text{FV}(a')
 \end{array} \}

Transfer Functions

- \(\text{in}[1] = \emptyset \)
- \(\text{in}[2] = \text{out}[2] \cup \text{out}[5] \)
- \(\text{in}[3] = \text{out}[3] \)
- \(\text{in}[4] = \text{out}[4] \)
- \(\text{in}[5] = \text{out}[5] \)

- \(\text{in}[1] = \emptyset \)
- \(\text{in}[2] = \text{out}[2] \cup \text{out}[5] \)
- \(\text{in}[3] = \text{out}[3] \)
- \(\text{in}[4] = \text{out}[4] \)
- \(\text{in}[5] = \text{out}[5] \)

- \(\text{out}[1] = \text{in}[1] \cup \{ a + b \} \)
- \(\text{out}[2] = \text{in}[2] \cup \{ a * b \} \)
- \(\text{out}[3] = \text{in}[3] \cup \{ a + 1 \} \)
- \(\text{out}[4] = \text{in}[4] \cup \{ a + b \} \)
- \(\text{out}[5] = \text{in}[5] \cup \{ a + b \} \)
Solution

1: \(x := a + b \)
2: \(y := a \cdot b \)
3: \(y > a + b \)
4: \(a := a + 1 \)
5: \(x := a + b \)

\[
\text{in}(1) = \emptyset \\
\text{out}(1) = \{ a + b \} \\
\text{out}(2) = \{ a + b, a \cdot b \} \\
\text{in}(3) = \{ a + b \} \\
\text{out}(4) = \emptyset \\
\text{out}(5) = \{ a + b \} \\
\text{in}(4) = \text{out}(3) = \{ a + b \} \\
\]

Kill/Gen

\(\text{Statement} \quad \text{in}(\ell) \quad \text{out}(\ell) \quad \text{cond} \)

\(\text{Statement} \quad \text{in}(\ell) \quad \text{out}(\ell) \quad \text{cond} \)

Kill/Gen

\(\text{Statement} \quad \text{in}(\ell) \quad \text{out}(\ell) \quad \text{cond} \)

\(\text{Statement} \quad \text{in}(\ell) \quad \text{out}(\ell) \quad \text{cond} \)

Reaching Definitions Revisited

\(\text{Statement} \quad \text{in}(\ell) \quad \text{out}(\ell) \quad \text{cond} \)

\(\text{Statement} \quad \text{in}(\ell) \quad \text{out}(\ell) \quad \text{cond} \)

Live Variables

\([x := 2]; \)
\([y := 4]; \)
\([x := 1]; \)
\(\text{if } [y > x] \text{ then } [z := y]; \)
\(\text{else } [z := y \cdot y]; \)
\([x := z]; \)

For each program point, which assignments \textbf{may} have been made, and not overwritten, when program execution reaches that point along some path.

Live Variables

\([x := 2]; \)
\([y := 4]; \)
\([x := 1]; \)
\(\text{if } [y > x] \text{ then } [z := y]; \)
\(\text{else } [z := y \cdot y]; \)
\([x := z]; \)

For each program point, which variables \textbf{may} be live at the exit from the point.
Live Variables

\[\begin{align*}
1: & \quad x := 2 \\
2: & \quad y := 4 \\
4: & \quad \text{if } y > x \text{ then } z := y \text{ else } z := y^2 \\
5: & \quad x := z
\end{align*} \]

Live Variables: solution

\[\begin{align*}
1: & \quad x := 2 \\
2: & \quad y := 4 \\
4: & \quad \text{if } y > x \text{ then } z := y \text{ else } z := y^2 \\
5: & \quad x := z
\end{align*} \]
Example: Available Expressions

- $L = \mathcal{P}(A\text{Exp})$ is partially ordered by \sqsubseteq
- \sqcup is \cap
- L satisfies the Ascending Chain Condition because $A\text{Exp}$ is finite (for a given program)

Analyses Summary

<table>
<thead>
<tr>
<th>Refining Definitions</th>
<th>Available Expressions</th>
<th>Live Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>\sqsubseteq</td>
<td>$\mathcal{P}(\text{Var} \times \text{Lab})$</td>
<td>$\mathcal{P}(\text{Var})$</td>
</tr>
<tr>
<td>\sqcup</td>
<td>\sqsubseteq</td>
<td>\sqsubseteq</td>
</tr>
<tr>
<td>Initial</td>
<td>${ (x,?)</td>
<td>x \in \text{Var} }$</td>
</tr>
<tr>
<td>Entry labels</td>
<td>(init)</td>
<td>(init) Final</td>
</tr>
<tr>
<td>Direction</td>
<td>Forward</td>
<td>Forward Backward</td>
</tr>
<tr>
<td>f_{lab}</td>
<td>$f_{\text{lab}}(\text{val}) = (\text{val} \cup \text{kill}) \cup \text{gen}$</td>
<td></td>
</tr>
</tbody>
</table>

Summary

- **Static Analysis**
 - Prove properties of a program at compile time
 - Over-approximate possible program behaviors
- **Dataflow Analysis**
 - Build control-flow graph
 - Assign transfer functions
 - Compute fixed point
- **Monotone Framework**
 - Can be used to express many useful analyses

Coming Up...