Last Time

- Parsing
 - Top-down or bottom-up
- Top-down parsing
 - Recursive descent
 - LL(k) grammars
 - LL(k) parsing with pushdown automata
- LL(k) parsers
 - Cannot deal with common prefixes and left recursion
 - Left-recursion removal might result in complicated grammar

Parser Classes – Reminder

- Top-down (predictive)
- Bottom-up (shift-reduce)

LR(k) Grammars

- A grammar is in the class LR(k) when it can be derived via:
 - Bottom-up analysis
 - Scanning the input from left to right (L)
 - Producing the rightmost derivation (R)
 - With lookahead of k tokens (k)
- A language is said to be LR(k) if it has an LR(k) grammar
- The simplest case is LR(0), which we discuss next
Any LL(k) language is also in LR(k) (and not vice versa), i.e., LL(k) ⊂ LR(k).

The lookahead is counted differently in the two cases:
- With LL(k), the algorithm sees k tokens of the right-hand side of the rule and then must select the derivation rule.
- With LR(k), the algorithm sees all right-hand side of the derivation rule plus k more tokens.

The LR family of parsers is more popularly used today.

Example: a Simple LR(0) Grammar

\[E \rightarrow E \ast B \mid E + B \mid B \]

\[B \rightarrow 0 \mid 1 \]

Let us number the rules:
1. \(E \rightarrow E \ast B \)
2. \(E \rightarrow E + B \)
3. \(E \rightarrow B \)
4. \(B \rightarrow 0 \)
5. \(B \rightarrow 1 \)

Goal: Reduce the Input to the Start Symbol

Example:
\[0 + 0 \ast 1 \]

\[B + 0 \ast 1 \]

\[E + 0 \ast 1 \]

Go over the input so far, and upon seeing a right-hand side of a rule, “invoke” the rule and replace the right-hand side with the left-hand side (which is a single non-terminal).

Shift & Reduce

In each step, we either shift a symbol from the input to the stack, or reduce according to one of the rules. Example: “0 + 0 \ast 1”.

Shift / Reduce Parser — Intuition

Gather input token by token
- until we find a right-hand side of a rule
- then, replace it with the non-terminal on the left hand side
- Going over a token and recording it in the stack is a shift
- Each shift moves to a state that records what we’ve seen so far
- A reduce replaces a string on the stack with a nonterminal that derives it
For a production rule \(N \rightarrow \alpha \beta \) in the grammar:

- **Input**:
 - Already matched
 - To be matched

\[
N \rightarrow \alpha \beta
\]

So far we've matched \(\alpha \), expecting to see \(\beta \)

LR(0) Item

\[
E \rightarrow E \ast B \mid E + B \mid B
\]

\[
B \rightarrow 0 \mid 1
\]

- \(E \rightarrow E \ast B \) **Shift Item**
- \(E \rightarrow E \ast B \) **Reduce Item**

Example: Parsing with LR(0) Items

\[
Z \rightarrow \text{expr} $
\]

\[
\text{expr} \rightarrow \text{term} \mid \text{expr} + \text{term}
\]

\[
\text{term} \rightarrow \text{ID} \mid (\text{expr})
\]

Z → E $
E → T | E + T
T → i | (E)

(just a shorthand of the grammar on top)

Example: Parsing with LR(0) Items

Input

\[
\text{expr} \rightarrow \text{term} \mid \text{expr} + \text{term}
\]

Z → E $
E → T | E + T
T → i | (E)

Closure

\[
Z \rightarrow \text{E} $
\]

E → T | E + T
T → i | (E)

Shift

\[
\text{expr} \rightarrow \text{term} \mid \text{expr} + \text{term}
\]

Z → E $
E → T | E + T
T → i | (E)

Reduce Item
Reducing the initial rule means accept
How does the parser know what to do?

- Pushdown Automaton!
 - A state will keep the info gathered so far
 - A table will tell it "what to do" based on current state and next token
 - Some info will be kept in a stack

Why do we need a stack?

- Suppose so far we have discovered $E \rightarrow B \rightarrow 0$ and $+$;
 - So we have constructed sentential form "$E +$".
- In the given grammar this can only mean $E \rightarrow E + B$.
- Suppose current state q_6 represents this situation.
- Now, the next token is 0, and we need to ignore q_6 for a minute, and work on $B \rightarrow 0$ to obtain $E + B$.
- Therefore, we push q_6 to the stack, and after identifying B, we pop it to continue.

The Stack

- The stack contains states
- For readability we also include variables and tokens (the recognizer does not need them)
- The initial stack contains q_0 only
- Apart from q_0 at the bottom of the stack, the rest of the stack contains pairs of (state, token) or (state, nonterminal)
The ACTION Table

- At each step we need to decide whether to **shift** the next token to the stack (and move to the appropriate state) or **reduce** a production rule from the grammar
- The ACTION table tells us what to do based on current state and next token:

 - **shift** n: shift and move to q_n
 - **reduce** m: reduce according to production rule (m)

 (also: accept and error conditions)

The GOTO Table

- Defines what to do on **reduce** actions
- After reducing a right-hand side to the deriving non-terminal, we need to decide what the next state is
- This is determined by the previous state (which is on the stack) and the variable we got
 - Suppose we reduce according to $N \rightarrow \beta$;
 - We remove β from the stack, and look at the state q that is now at the top. GOTO[q, N] specifies the next state.

 - *Note – this can be a little confusing:*
 - q is the state after popping β
 - N is the left-hand side of the rule just used in **reduce**

For example...

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>+</td>
</tr>
<tr>
<td>q_0</td>
<td>r1</td>
</tr>
<tr>
<td>q_1</td>
<td>r1</td>
</tr>
<tr>
<td>q_2</td>
<td>r1</td>
</tr>
<tr>
<td>q_3</td>
<td>r1</td>
</tr>
<tr>
<td>q_4</td>
<td>r1</td>
</tr>
<tr>
<td>q_5</td>
<td>r1</td>
</tr>
<tr>
<td>q_6</td>
<td>r1</td>
</tr>
<tr>
<td>q_7</td>
<td>r1</td>
</tr>
</tbody>
</table>

The Algorithm, Formally

- Initialize the stack to q_0
- Repeat until halting:
 - Consider ACTION[q, t] for q at the top of stack and t the next token
 - **shift n**: Remove t from the input and push t and then q_n to the stack.
 - **reduce m**, where rule (m) is $N \rightarrow \beta$:
 - Remove β pairs from the stack; let q be the state at the top of the stack.
 - Push M and the state GOTO[q, M] to the stack.
 - **accept**: halt successfully.
 - empty cell: halt with an error.

Using LR Items to Build the Tables

- Typically a state consists of several LR items
- For example, if we identified a string that is reduced to E, then we may be in one of the following LR items:

 $E \rightarrow E + B$ or $E \rightarrow E * B$

- Therefore one state would be:

 $q = \{E \rightarrow E + B , E \rightarrow E * B\}$

- But if the current state includes $E \rightarrow E + B$, then we must allow B to be derived too → **Closure**
Construct the Closure

• Proposition: a closure set of LR(0) items has the following property — if the set contains an item of the form
 \[A \rightarrow \alpha \cdot B \beta \]
 then it must also contain an item
 \[B \rightarrow \delta \]
 for each rule of the form \(B \rightarrow \delta \) in the grammar.

• Building the closure set for a given item set is recursive, as \(\delta \) may also begin with a variable.

Closure: an example

• The closure of the set \(C \) is
 \[\text{clos}(C) = \{ E \rightarrow E + B , \ B \rightarrow B , \ B \rightarrow 0 , \ B \rightarrow 1 \} \]
 This will become another parser state

Extended Grammar

• Goal: simple termination condition
 ‣ Assume that the initial variable only appears in a single rule.
 This guarantees that the last reduction can be (easily) detected.
 ‣ Any grammar can be (easily) extended to have such structure.

Example: the grammar

```
(1) E \rightarrow E \times B
(2) E \rightarrow E + B
(3) E \rightarrow B
(4) B \rightarrow 0
(5) B \rightarrow 1
```

Can be extended into

```
(0) S \rightarrow E
(1) E \rightarrow E \times B
(2) E \rightarrow E + B
(3) E \rightarrow B
(4) B \rightarrow 0
(5) B \rightarrow 1
```

The Initial State

• To build the ACTION/GOTO table, we go through all possible states during derivation
 • Each state represents a (closure) set of LR(0) items
 • The initial state \(q_0 \) is the closure of the initial rule
 • In our example the initial rule is \(S \rightarrow E \), and therefore the initial state is
 \[q_0 = \text{clos}(S \rightarrow E) = \{ S \rightarrow E , \ E \rightarrow E \times B , \ E \rightarrow \times + B , \ E \rightarrow B , \ B \rightarrow 0 , \ B \rightarrow 1 \} \]
 • We build all possible next states by following a single symbol (token or variable)

The Next States

• For each possible terminal or variable \(X \), and each possible state (closure set) \(q \),
 1. Find all items in the set of \(q \) in which the dot is before \(X \).
 We denote this set by \(q \cdot X \)
 2. Move the dot ahead of \(X \) in all items in \(q \cdot X \)
 3. Find the closure of the obtained set:
 this is the state into which we move from \(q \) upon seeing \(X \)

• Formally, the next set of a set \(C \) and next symbol \(X \)
 \[\text{nextSet}(C, X) = \text{clos}(\text{step}(C, X)) \]
Recall that in our example
\[q_0 = \text{clos}(S \rightarrow \#E) = \]
\[\{ S \rightarrow \#E, E \rightarrow \#E \ast B, E \rightarrow \#E + B, E \rightarrow \#0, B \rightarrow \#1 \} \]
Let us check which states are reachable from it.

States reachable from \(q_0 \) in the example

From these new states there are more reachable states

Finally

Automaton
Building the Tables

- A row for each state.
- If q_j was obtained at q_i upon seeing x, then in row q_i and column x we write j.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building the tables: accept

- Add accept in column S for each state that has $S \rightarrow E$ as an item.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 2 3 4 5 6</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building the Tables: Shift

- Any number n in the action table becomes shift n.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$s1$ $s2$</td>
<td>3 4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building the Tables: Reduce

- For any state whose set includes the item $A \rightarrow \alpha$, such that $A \rightarrow \alpha$ is production rule (m):
 - Fill all columns of that state in the ACTION table with reduce m.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$s1$ $s2$</td>
<td>3 4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note on LR(0)

- When a reduce is possible, we execute it without checking the next token.

<table>
<thead>
<tr>
<th>State</th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$s1$ $s2$</td>
<td>3 4</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GOTO/ACTION Table

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Action</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td>q0</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>q2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>s3</td>
<td>q3</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>q7</td>
<td>s5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

* s = shift to state n

 r = reduce using rule number m

Are we done?

- Can make a transition diagram for any grammar
- Can make a GOTO table for every grammar
- ... but the states are not always clear on what to do

 ⇒ Cannot make a deterministic ACTION table for every grammar

LR(0) Conflicts

shift/reduce conflict

View in Action/Goto Table

- shift/reduce conflict...

<table>
<thead>
<tr>
<th>State</th>
<th>Action</th>
<th>Action</th>
<th>Action</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET</td>
<td>q0</td>
<td>s5</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>s2</td>
<td>q2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
<td>r1</td>
</tr>
<tr>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
<td>r2</td>
</tr>
<tr>
<td>s3</td>
<td>q3</td>
<td>s5</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>s7</td>
<td>q7</td>
<td>s5</td>
<td>s7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
LR(0) Conflicts

Z → • E
E → • T
E → • E + T
T → • i
V → • i
T → • (E)

View in Action/Goto Table

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
</tbody>
</table>

Can there be a shift/shift conflict?

LR(0) vs. ε-Rules

- Whenever a nonterminal has an ε production, it will be reduced as soon as it is reached in the grammar (without looking at the next token).
- If the variable has another production with a terminal prefix, there is an inherent shift/reduce conflict

Coming Up

Yet More LR Parsing

THEORY OF COMPILATION
LECTURE 04
Syntax Analysis
Bottom-Up Parsing
Reminder – Parser Classes

- Top-down (predictive)
- Bottom-up (shift-reduce)

Reminder – LR(0) Parsing

Input

Stack

Output

ACTION Table

GOTO Table

LR(0) Parsing Algorithm

<table>
<thead>
<tr>
<th>S → E</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → E + B</td>
</tr>
<tr>
<td>E → E * B</td>
</tr>
<tr>
<td>E → T</td>
</tr>
<tr>
<td>T → 0</td>
</tr>
<tr>
<td>T → 1</td>
</tr>
</tbody>
</table>

Reminder – LR(0) Conflicts

<table>
<thead>
<tr>
<th>S → E $</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → T</td>
</tr>
<tr>
<td>E → E + T</td>
</tr>
<tr>
<td>T → 0</td>
</tr>
<tr>
<td>T → 1</td>
</tr>
</tbody>
</table>

shift/reduce conflict
Reminder – LR(0) Conflicts

Back to Action/Goto Table

SLR Grammars

GOTO/ACTION Table

GOTO/ACTION Table
The tokens that can follow E are '+' ')' and '$$$.

[1]

\[Z \rightarrow E \$

[2]

\[E \rightarrow T \$

[3]

\[E \rightarrow E + T \$

[4]

\[T \rightarrow i \$

[5]

\[T \rightarrow (\ E \) \$

Now let's add "\(T \rightarrow i \ [\ E \] \)"

\[Z \rightarrow E \$

\[E \rightarrow T \$

\[E \rightarrow E + T \$

\[T \rightarrow i \$

\[T \rightarrow (\ E \) \$

Now let's add "\(T \rightarrow i \ [\ E \] \)"

SLR: check next token when reducing

- Simple LR(1), or SLR(1), or SLR.
- Example demonstrates elimination of a shift/reduce conflict.
- Can eliminate reduce/reduce conflicts when conflicting rules' left-hand sides satisfy:
 \[\text{FOLLOW}(T) \cap \text{FOLLOW}(V) \neq \emptyset. \]
- But cannot resolve all conflicts.
Consider this non-LR(0) grammar

\[
\begin{align*}
S' &\rightarrow S \\
S &\rightarrow L = R \\
S &\rightarrow R \\
L &\rightarrow \ast R \\
L &\rightarrow \text{id} \\
R &\rightarrow L
\end{align*}
\]

Shift/reduce conflict

\[
\begin{align*}
S &\rightarrow L \ast R \quad \text{vs.} \quad R \rightarrow L \ast R \\
\text{FOLLOW}(R) \text{ contains } \ast \Rightarrow \text{SLR cannot resolve the conflict either}
\end{align*}
\]

Resolving the Conflict

- In SLR, a reduce item \(N \rightarrow \alpha \ast\) is applicable when the lookahead is in \(\text{FOLLOW}(N)\).
- But there is a whole sentential form that we have discovered so far.
- We can ask what the next token may be given all previous reductions.
- For example, even looking at the \(\text{FOLLOW}\) of the entire sentential form is more restrictive than looking at the \(\text{FOLLOW}\) of the last variable.
- In a way, \(\text{FOLLOW}(N)\) merges look-ahead for all possible occurrences of \(N\):
\[
\text{FOLLOW}(\sigma N) \subseteq \text{FOLLOW}(N)
\]
- LR(1) keeps look-ahead with each LR item

LR(1) Item

\[
N \rightarrow \alpha \ast \beta, \sigma
\]

So far we've matched \(\alpha\), expecting to see \(\beta\), followed by the lookahead \(\sigma\)
LR(1) Item

- Example: the production $L \rightarrow \text{id}$ yields the following LR(1) items:

<table>
<thead>
<tr>
<th>Productions</th>
<th>Tag</th>
<th>ACTION</th>
<th>FOLLOW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$S' \rightarrow S$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow R$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S' \rightarrow S$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{R}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow \text{R}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S' \rightarrow S$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{R}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow \text{R}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S' \rightarrow S$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{R}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S \rightarrow \text{R}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$L \rightarrow \text{id}$</td>
<td>ϵ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creating the states for LR(1)

- We start with the initial state:

 q_0 will be the closure of: $(S' \rightarrow S, S)$

- Closure for LR(1):

 - For every $(A \rightarrow \alpha, \epsilon)$ in the state:

 * For every production $B \rightarrow \beta$ and every token $b \in \text{FIRST}[\beta]$

 * $[B \rightarrow \beta, b]$ should also be in the state

Closure of $(S' \rightarrow S, S)$

- We would like to add rules that start with S, but keep track of possible lookahead.

 * $S' \rightarrow S, S$ – Rules for S

 * $S' \rightarrow \text{R}, S$ – Rules for L

 * $S' \rightarrow \text{id}, S$ – Rules for R

 * $[L \rightarrow \text{id}, \epsilon]$ – Rules for L

 * $[R \rightarrow \text{id}, \epsilon]$ – Rules for R

 * $[S \rightarrow \text{id}, \epsilon]$ – Rules for L

 * $[S \rightarrow \text{id}, \epsilon]$ – Rules for L

The State Machine
The State Machine

Back to the conflict

Building the Tables

Building the Table

Bottom-up Parsing
Chomsky Hierarchy

Grammar Hierarchy

Building the Parse Tree
- Done at the time of `reduce`.

Building the Abstract Syntax Tree
- Generally — just "skip over" the creation of some internal nodes and you get an AST
Summary

- Bottom up derivation
- LR(k) can decide on a reduce after seeing the entire right side of the rule plus k look-ahead tokens.
- Particularly LR(0).
- Using a table and a stack to derive.
- LR items and the automaton.
- Creating the table from the automaton.
- LR parsing with pushdown automata
- LR(0), SLR, LR(1) – different kinds of LR items, same basic algorithm.
- LALR: in the tutorial.

Coming Up

- Semantic Analysis