Mutex with Read/Write Variables

In an atomic step, a process can
read a variable or
write a variable
but not both!

The Bakery algorithm ensures
no starvation
mutual exclusion

Using $2n$ shared read/write variables
Bakery Algorithm: Take 2

Number[i], integer, initially 0
 - written by pi,
 - read by others

Code for entry section:

\[
\text{Number[i]} = 1 + \max\{\text{Number[1]}, \ldots, \text{Number[n]}\} \\
\text{for } j = 1 \text{ to } n \text{ do} \\
\quad \text{wait until (Number[j] == 0)} \\
\quad \text{or (Number[j],j) > (Number[i],i))}
\]

Code for exit section:

\[
\text{Number[i]} = 0
\]

Bakery Algorithm: Take 3

Number[i], integer, initially 0
Choosing[i], Boolean, initially false
 - written by pi,
 - read by others

Code for entry section:

\[
\text{Choosing[i]} = \text{true} \\
\text{Number[i]} = 1 + \max\{\text{Number[1]}, \ldots, \text{Number[n]}\} \\
\text{Choosing[i]} = \text{false} \\
\text{for } j = 1 \text{ to } n \text{ do} \\
\quad \text{wait until Choosing[j] == false} \\
\quad \text{wait until (Number[j] == 0)} \\
\quad \text{or (Number[j],j) > (Number[i],i))}
\]

Code for exit section:

\[
\text{Number[i]} = 0
\]
Correctness of Bakery Mutex: Key Claim

When process \(i \) is in the critical section for every process \(k \neq i \) not in the remainder (\(\text{Number}[k] \neq 0 \)),
\((\text{Number}[i],i) < (\text{Number}[k],k) \)

Seems intuitive from the code, but is not trivial

This is not exactly the original Bakery algorithm

Proof of Key Claim

When process \(i \) is in the critical section for every process \(k \neq i \) not in the remainder (\(\text{Number}[k] \neq 0 \)),
\((\text{Number}[i],i) < (\text{Number}[k],k) \)

\(\text{Number}[k] = 0 \) \(\rightarrow \) \((\text{Number}[k],k) > (\text{Number}[i],i) \)

\(\text{p}_i \) 's most recent read of \(\text{Number}[k] \)

\(\text{p}_i \) in CS and \(\text{Number}[k] \neq 0 \)
Proof of Key Claim: Case 1

When process i is in the critical section for every process $k \neq i$ not in the remainder ($\text{Number}[k] \neq 0$),

$$(\text{Number}[i], i) < (\text{Number}[k], k)$$

Proof of Key Claim: Case 2

When process i is in the critical section for every process $k \neq i$ not in the remainder ($\text{Number}[k] \neq 0$),

$$(\text{Number}[i], i) < (\text{Number}[k], k)$$

Proved using arguments similar to Case 1.

$(\text{Number}[k], k) > (\text{Number}[i], i)$
Mutual Exclusion for Bakery Algorithm

Lemma: If \(p_i \) is in the critical section, then Number\([i]\) > 0.

Proof by straightforward induction.

\[\Rightarrow \text{If } p_i \text{ and } p_k \text{ are simultaneously in CS, both have Number } > 0.\]

By previous lemma,

- \((\text{Number}[k],k) > (\text{Number}[i],i)\) and
- \((\text{Number}[i],i) > (\text{Number}[k],k)\)

\[\text{Contradiction!}\]

The algorithm ensures mutex

No Starvation for the Bakery Algorithm

Must be waiting on Choosing[] or Number[]

- Let \(p_i \) be starved process with smallest \((\text{Number}[i],i)\).

- Any process entering entry section after \(p_i \) has chosen its number chooses a larger number.

- Every process with a smaller number eventually enters CS (not starved) and exits.

- Thus \(p_i \) cannot be stuck on Choosing[] or Number[].
Summary of Mutex Algorithms

<table>
<thead>
<tr>
<th>Progress property</th>
<th># memory states</th>
<th># read / write variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>no deadlock</td>
<td>2 (test&set alg)</td>
<td>1</td>
</tr>
<tr>
<td>no starvation</td>
<td>n/2 + c (Burns et al.)</td>
<td>3n Booleans (tournament)</td>
</tr>
<tr>
<td>bounded waiting (FIFO)</td>
<td>n² (queue)</td>
<td>2n unbounded (bakery)</td>
</tr>
</tbody>
</table>

Flag Principle
Bounded 2-Process Mutex w/o Deadlock

Entry section

<table>
<thead>
<tr>
<th>Process P_0</th>
<th>Process P_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Want[0] = 1, wait until Want[1] == 0</td>
<td>Want[1] = 0, wait until $W[0] == 0$</td>
</tr>
<tr>
<td></td>
<td>Want[1] = 1, if Want[0] == 1 goto Line 1</td>
</tr>
</tbody>
</table>

Exit section:

| Want[0] = 0 | Want[1] = 0 |

Want flags ensure mutual exclusion (next slide)
Satisfies no deadlock (exercise)
But unfair (P_1 can starve)
Mutex in 2-Process Algorithm

Suppose p_0 and p_1 are simultaneously in CS.

Want[0] = 1
Want[1] = 1

Suppose p_0 and p_1 are simultaneously in CS.

Contradiction!

Process P_0
Want[0] = 1
wait until Want[1] == 0

Process P_1
Want[1] = 0
wait until W[0] == 0
Want[1] = 1
if Want[0] == 1 goto Line 1

p_0's last write of 1 to Want[0]
p_0's last write of 1 to Want[1]
p_0 reads 1 from Want[1]
Want[0] = 1
Want[1] = 1

Contradiction!
Bounded 2-Process Mutex w/o Starvation

Entry section

\[
\begin{align*}
\text{Want}[i] &= 0 \\
\text{wait until } \text{Want}[1-i] &= 0 \text{ or } \text{Priority} = i \\
\text{Want}[i] &= 1 \\
\text{if } (\text{Priority} = 1-i) \text{ then} \\
&\quad \text{if } (\text{Want}[1-i] = 1) \text{ then goto Line 1} \\
&\quad \text{else wait until } (\text{Want}[1-i] = 0)
\end{align*}
\]

Exit section:

\[
\begin{align*}
\text{Priority} &= 1-i \\
\text{Want}[1] &= 0
\end{align*}
\]

No-Deadlock for 2-Process Mutex

- Useful for showing no-starvation.
- If one process stays in remainder forever, other one cannot be starved
 - E.g., if \(p_1 \) stays in remainder forever, then \(p_0 \) keeps reading \(\text{Want}[1] = 0 \).
- So any deadlock starves both processes
No-Deadlock for 2-Process Mutex

Both processes are in their entry section
Priority remains fixed, e.g. at 0

Code for \(p_0 \)
\[
\text{Want}[i] = 0 \\
\text{wait until Want}[1-i] == 0 \text{ or Priority == i} \\
\text{if (Priority == 1-i) then} \\
\text{if (Want}[1-i] == 1) \text{ then goto Line 1} \\
\text{else wait until (Want}[1-i] == 0) \\
\]

Code for \(p_1 \)
\[
\text{Want}[i] = 0 \\
\text{wait until Want}[1-i] == 0 \text{ or Priority == i} \\
\text{if (Priority == 1-i) then} \\
\text{if (Want}[1-i] == 1) \text{ then goto Line 1} \\
\text{else wait until (Want}[1-i] == 0) \\
\]

Cool!!!
No-Starvation for 2-Process Mutex

p_0 is starved
no deadlock \Rightarrow p_1 repeatedly enters CS

p_0 stuck in entry

No-Starvation for 2-Process Mutex

Want[i] = 0
wait until Want[1-i] == 0 or Priority == i
Want[i] = 1
if (Priority == 1-i) then
 if (Want[1-i] == 1) then goto Line 1
else wait until (Want[1-i] == 0)
Priority = 1-i
Want[i] = 0

p_0 stuck in entry p_1 sets Priority to 0 p_0 with Want[0] = 1, waits for Want[1] = 0 p_1 with Want[1] = 0, waits for Want[0] = 0

P_0 enters CS
What to do with > 2 Processes?

Tournament Tree Mutex

Tournament tree: complete binary tree with \(n-1\) nodes
2-process mutex in each inner node
 – separate copies of the 3 shared variables
Tournament Tree Mutex

Two (fixed) processes start at each leaf

Winner of the 2-process mutex at a node proceeds to the next higher level
- coming from left, play role of \(p_0 \)
- coming from left, play role of \(p_1 \)

Winner at the root enters CS

Tournament Tree Mutex Algorithm

Tree nodes numbered in preorder
\(p_i \) begins at node \(2^k \lfloor i/2 \rfloor \), playing role of \(p_{i \mod 2} \)

After winning node \(v \), CS for node \(v \) is
- entry code for all nodes on path from \(v \)'s parent \(\lfloor v/2 \rfloor \) to root
- real critical section
- exit code for all nodes on path from root to \(v \)'s parent \(\lfloor v/2 \rfloor \)
Analysis of Tournament Tree Mutex

Correctness: based on correctness of 2-process algorithm and tournament structure:

- projection of an admissible execution of tournament algorithm onto a particular node is an admissible execution of 2-process algorithm
- mutex for tournament algorithm follows from mutex for 2-process algorithm at the root
- no starvation for tournament algorithm follows from no starvation for the 2-process algorithms at all nodes

Space Complexity: $3n$ Boolean shared variables.

Summary of R / W Mutex Algorithms

<table>
<thead>
<tr>
<th>Progress property</th>
<th># read / write variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>no deadlock</td>
<td></td>
</tr>
<tr>
<td>no starvation (tournament)</td>
<td>$3n$ Booleans</td>
</tr>
<tr>
<td>FIFO (bakery)</td>
<td>Can we do better?</td>
</tr>
<tr>
<td></td>
<td>2n (Booleans + unbounded)</td>
</tr>
</tbody>
</table>
Lower Bound on Number of Variables

Theorem: A mutex algorithm ensuring no deadlock uses at least \(n \) shared variables

For every \(n \), reach a configuration in which \(n \) variables are **covered**

Covering

Several processes write to the same location
Write of early process is lost, if no read in between

Must write to distinct locations

Process \(p \) **covers a register R in a configuration C** if its next step from C is a write to R
Quiescence and Appearing Quiescent

A configuration is quiescent if all processes are in the remainder

P is a set of processes, C and D configurations

C \sim_P D if each process in P has same state in C and D and all shared variables have same value in C and D

C is \textbf{P-quiescent} if it is indistinguishable to processes in P from a quiescent configuration — I.e., C \sim_P D for some quiescent configuration D

Warm-Up Lemma

Lemma: If C is p-quiescent, then there is a p-only schedule \sigma that takes p into the CS, in which p writes to a variable that is not covered in C
Proving the Warm-Up Lemma

Lemma: If C is p-quiescent, then there is a p-only schedule \(\sigma \) that takes p into the CS, in which p writes to a variable that is not covered in C.

![Diagram showing the proof of the Warm-Up Lemma](image)

Inductive Claim

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of \(p_0, \ldots, p_{k-1} \) only, s.t.

(a) \(p_0, \ldots, p_{k-1} \) cover k distinct variables in D

(b) D is \(\{p_k, \ldots, p_{n-1}\} \)-quiescent

Proof is by induction on k

Taking \(k = n \) implies the lower bound
Base Case: $k = 1$

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0, \ldots, p_{k-1} only, s.t.
(a) p_0, \ldots, p_{k-1} cover k distinct variables in D
(b) D is $\{p_k, \ldots, p_{n-1}\}$-quiescent

By warm-up lemma, there is a p_0-only schedule that takes p_0 into the CS, in which p_0 writes

 Desired D is just before p_0’s first write.
Inductive Step: Assume for k

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0,\ldots,p_{k-1} only, s.t.
(a) p_0,\ldots,p_{k-1} cover k distinct variables in D
(b) D is $\{p_k,\ldots,p_{n-1}\}$-quiescent

Inductive Step: Apply Warm-Up Lemma

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0,\ldots,p_{k-1} only, s.t.
(a) p_0,\ldots,p_{k-1} cover k distinct variables in D
(b) D is $\{p_k,\ldots,p_{n-1}\}$-quiescent
Inductive Step: Hiding p_{k+1}

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0, \ldots, p_{k-1} only, s.t.
(a) p_0, \ldots, p_{k-1} cover k distinct variables in D
(b) D is $\{p_k, \ldots, p_{n-1}\}$-quiescent

Re-Apply Inductive Assumption

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of p_0, \ldots, p_{k-1} only, s.t.
(a) p_0, \ldots, p_{k-1} cover k distinct variables in D
(b) D is $\{p_k, \ldots, p_{n-1}\}$-quiescent
Inductive Step: Not Quite There

For every k, from every quiescent configuration C, we can reach a configuration D, by steps of $p_0,...,p_{k-1}$ only, s.t.
(a) $p_0,...,p_{k-1}$ cover k distinct variables in D
(b) D is $\{p_k,...,p_{n-1}\}$-quiescent