A distributed algorithm for
minimum weight spanning trees

R. G. Gallager, P. A. Humblet and
P. M. Spira

Prepared by:
Guy Flysher and Amir Rubinshtein






Preface

In this document we will review Gallager, HumbletleSpira's

distributed algorithm for minimum weight spannimgés.

In centralized algorithms (as opposed to distriduiees) we know of

many simple algorithms that find a MST. In the wlsited model

however, things are more complex since there i®nbty" that knows

the topography of the entire graph. In this aldgnitwe will assume that

each node knows only the weights of its adjacegesdThe algorithm
displayed will be uniform (all nodes run the exsaime code) and will

require up teN log, N+ 2E messages where each message takes not more

thanlog,w, +log,8N bits (w,, being the maximum weight in the graph).

1. Problem definition

In the problem of the minimum spanning tree, wegiwven an undirected
graph withN nodes and edges. Each node represents a processor (on
which the algorithms code is executed) and eack eglyesents a
bidirectional communication channel (messages eamnamsmitted
independently in both directions of an edge). Wik agisume that all
messages arrive after a finite but unpredictablaydevithout errors and
in sequence (FIFO). We will also associate a weidtich is finite and
distinctwith each edge.

The question arises, why is the demand for distwaghts needed? This
guestion will be answered in section 2.2. Anotherggion that might
arise is how can one "create" distinct weights winenoriginal weights
are not distinct.

1.1 Making the weights distinct

If all the nodes have distinitentities then we can use these identities to
make the edges' weights distinct. We do this byatemating the
identities of the neighboring nodes of each edgestaeight.




We arbitrarily choose if throughout the algorithme smaller identity
appears first or the larger one in order to askatle nodes are in
agreement over the edge's weight.

A natural approach is to try and have the nodecseindom identities
and send a message with these identities to teeghbors notifying them
of the selection. Once all nodes have chosen distantities we can
apply the method shown above. While the expetedber of tries
needed to reach a situation where all the idestére distinct can be as
small as we want (By having the identities chosemfa larger set), the
probability of failure after any amount of attem@siot zero. Therefore,
this approach will leave us with a random algoritivheere we can only
bound the expected complexity.

If we do not have distinct weights nor distinctnd#@es, no_deterministic

uniform algorithm exists for the MST problem.
We can easily be persuaded of this fact by theveflg example:

w=3 w=3

w=3
Every two edges make up a MST. Since the algorighumiform and
each node has exactly the same information asthi®esy clearly there is
no way to choose specific two of the three.

2. Review of spanning trees

We define dragmentof a MST as a sub-tree (that is, a connectedfset o
nodes and edges of the MST). Given a graph amabanfent of a MST,

we define aroutgoing edgas an edge with exactly one end in the
fragment.

2.1 -Property 1. Given a fragment of a MST, letbe a minimum weight
outgoing edge of the fragment. Joinmgnd its adjacent non-fragment
node to the fragment yields another fragmerg BMIST (not necessarily

the same MST the original fragment was part of).

Proof: Suppose e is not in any MST containing tagrhent. By

definition adding any edge to a MST will createyale, in particular
addinge will create a cyclee is an outgoing edge therefore it leads out of
the fragment. Since the cycle passes through dggrient (it has a part



which is outside the fragment and a part whicimssde the fragment)
there must be another outgoing edge with respebtisdragment which
is part of the cycle, we shall mark it@asSincee is the fragment's
minimum weight outgoing edge we can deduce < w( 9. If we remove
a, we are left with a connected graph without cythesefore a tree. We
did not increase the total weight of the tree (tgliage and removing)
therefore this new tree must also be a M&T.

2.2 -Property 2: If all edges of a connected graph have differegights,
then the MST is unique.

Proof. Suppose there are 2 different MSTs.

Let e be the minimum weight edge such tadtelongs to one MSTIY)
and not the othef]. SinceT is a tree, adding will create a cycle. At
least one of the edges along the cycle does neaappT'. This is true
since if all the edges on this cycle appeaF'jihenT' contains a cycle
which is a contradiction t®' being a tree. Removing one of the edges
along the cycle which do not appeaiTirwill leave us with a tree whose
total weight is lower than that df(sincee is the minimum weight edge
that appears in only one of the trees and all visigle distinct) in
contradiction taT being a MSTH

3. The algorithm

3.1-Theidea

In this section we will talk about the general iddahe algorithm. The
details about how the actions described below ezeraplished appear in
section 3.3.

The idea of the algorithm will be based on the praperties above. We
start withN fragments containing a single node. Using propEntye can
enlarge the fragments. Property 2 assures us tiet two fragments
have a common node; their union is also a fragnidns follows from
the fact that both original fragments were pa ®ST and the "new"
fragment is also part of a MST. Since there is @amyg possible MST
they both belong to the same MST and so does tecambined
fragment.

In the algorithm to follow each fragment findsmsnimum weight
outgoing edge (asynchronously) and tries to commitie the fragment
on the other side of the edge. The way this is depends on the
fragmentslevel

A fragment containing a single node ideatelO.



» Case 1: If two fragments have the sdewelL and the same
minimum weight outgoing edge, they combine to farmew
fragment at levell(+1).

Fragment F
at level 1

Fragment F’ Fragment Fpew
at level 1 at level 2

The shared minimum weight outgoing edge is caltednew
fragment'scoreand its adjacent nodes are calleddbee nodes

» Case 2: If fragmerft is at levelL and fragmenFE’ at levell’>L is
at the other end d¥'s minimum outgoing edge, then fragménis
absorbed by’ (the level remaing’).

Fragment F
at level O

Fragment F’

Fragment F'
at level 1

at level 1

The rule of thumb (The logic behind it will be eapied in section
3.7) is: A low level component is never kept wagtin



Comment If fragmentF is at levelL and fragmenE’ at levelL'<L is at
the other end df’'s minimum outgoing edge then no absorption occurs.

3.2 -Preliminaries

The nodesEach node can be in one of three staédéseping Find and
FoundwhereSleepings the initial state of all nodes. The node wélib
stateFind when looking for the minimum weight outgoing eddehe
fragment it belongs to and in st&teundat all other times. The algorithm
starts when one or more nodes spontaneously awAkerde may also
be woken up by the receiving of a message.

The edgesFor each edge=(u,v) nodesu andv will have a variable with
the edge’s state which can be one of the followimge:
1. Rejected- The edge is not part of the MST.
2. Branch— The edge is a part of the MST.
3. Basic— The algorithm has not yet decided whether thye ésl part
of the MST or not.

3.3 - Finding the minimum weight outgoing edge

A zero level fragment (which always consists oirgle node) performs
the following algorithm upon awakening:
1. It chooses its minimum weight adjacent edge.
2. It marks it as a branch of the MST.
3. It sends aConnecf0)” message on this edge (we will explain this
in greater detail later).
4. It goes into state Found (waiting for a repynfrthe node on the
other side).

According to property 1 and property 2 we know tiat minimum
weight outgoing edge of a fragment consisting single node belongs to
the unique MST.

In the case of nonzero fragment let us assumeiodt-1 fragments
have just merged to form a new fragment at lewshere the weight of
the new componentsore, w(e) is the new component’s identity. An
initiate message containing the fragments identity, itsllamd the
argumenfind is sent from theore nodeslong the fragmentlsranch
edges (and only these edges). The message is assedll the
fragments nodes through flooding (similar to thgRitocol). Upon



receiving such a message a node becomes aware wietilging which
has occurred and of the new identity and levehefftagment.

An important observation is that if there are comgius of level-1
waiting to connect to the fragment, the nodes ftotbetinitiate message
to them as well (and in the same way if there #nerd.-1 fragments
waiting to connect to it, it floods the messagétm as well). The logic
behind this is the rule of thumb we mentioned earlThisL-1 fragment
asked to be connected to one of the bablevel fragments which have
just merged and was not yet answered, which isvallio Now however it
has become a lower level fragment since the negwieats level it.
Therefore it must be absorbed immediately. Theait@itmessage does
exactly that.

Each node, after receiving thetiate message with the argument find
starts looking for its minimum weight outgoing edgeloes so by
sending out a message caltedton the minimum weighbasicedge
adjacent to it. Théestmessage contains the fragments id and level. A
node receiving éestmessage does the following:

» Iftheid in the message is the same as the ideofragment the
node belongs to —r@jectmessage is sent back (*)

* Iftheid in the message differs from the id of fregment the node
belongs to and the level in the message is lowegoal to that of
the node's fragment — agceptmessage is sent back.

* Iftheid in the message differs from the id of fregment the node
belongs to and the level in the message is higitzar that of the
node's fragment — no reply is sent until the situelhas changed.

(*) an exception to this rule is when the node #wit theaestmessage
receives destmessage along the same edge with the same idcln s
a case a reject message is not sent (the othewsidd get the
message sent by this node and know that this edga ian outgoing
edge). This is done in order to obtain a small elese in message
complexity.

If the node which sent thtestmessage received@ectmessage, it
marks the edge asjectedand moves on to try the nexdsicedge with
the minimum weight adjacent to it.

After a node has found iteinimum weight outgoing edge (or found that
it has no adjaceritasicedges left) it waits for eeportmessage from all
the nodes it flooded thaitiate message to (similar to the
acknowledgment part in PIF). After receiving alltbése messages it
sends back eeport message back to the node from which it received th



initiate message. Theeport message contains the minimum between the
weight of the outgoing edge found by the nodefietl the minimum
found by all the nodes which sent tteport messages back. This process
continues until theeport messages reach tbhere nodesThe twocore
nodesexchangeeport message and at this point, botre nodeknow
through which of their edges the path to the mimmuautgoing edge
passes.

3.4 — Changing the core

After bothcore nodeknow through which edge the minimum outgoing
edge can be reached, t@me nodewhich is "closer" to the minimum
outgoing edge sends a message calfethge-coreThechange-core
message is sent to all the nodes on the path fiegote nodeo the
minimum outgoing edge (each node knows through hvldge it should
pass the message according to the report messugem). thechange-
corereaches the node which found the minimum outgedttmg, this node
sends &onnectmessage along this edge which contains the fratgnen
level This message notifies the fragment on the otlderaf the edge
that this fragment whishes to merge/be absorbat by

We only pass thehange-corenessage through the nodes on the path
from thecore-nodego the minimum outgoing edge and the question
arises, do the other nodes not need to know ottlasge. The answer is
no as can be seen in the image below.

As we can see changing the "direction” of the edd@sg the path will
cause all messages being sent to theotdto be diverted to the new
core(in reality a change in direction is simply thedes knowing of the
change, sending messages along the edge in tadidir).



3.5 - Connecting fragments
The rules for joining fragments in the algorithne:ar

If two fragments alevel Lhave the same minimum outgoing edge, each
sends the messagennect(L)over this edge, one in each direction (this
was mentioned earlier in section 3.4, when we dised what happens
after change-core reaches the nodes adjacent toitin@um outgoing
edge). This edge now becomes the core for the coempavith level

(L+1). New initiate messages are sent by the newscoogles and the
process of finding the minimum weight outgoing edggts over.

What happens whenannectimessage from nodein a low level
fragment with level and identityF reaches a node in a higher level’
with identity F? As we said before a lower level fragment nevaitsv
Noden’ immediately sends back amtiate message with parametdt's
andL’ to n (which is flooded to all nodes I, effectively causing
fragmentF to be absorbed iR’ by updating the information in its nodes
to that of the new fragment).

The messagmitiate contains, in addition to the mentioned parameters
(leveland fragment identity) a third parameter: theestdithe node
sending it (i.e. find or found).

If the node sending the initiate has not yet sismigiport, then its state
must beFind, and the parameter it sends is therefonel. This causes
fragmentF to join the search (The node will not send repattl it also
receives aeport message from the joining fragment).

If the node sending the initiate had already ssnteport, then its state
and the parameter it sends mustbend Since it had already sent its
report, the edge on which tiratiate was sent was not its minimum
outgoing edge. Therefore, fragméntloes not need to join the search.
Indeed, notice that it's not possible that fragniehias an outgoing edge
with a lower weight than the minimum outgoing edg&’ (the edge
connecting to F’), since ther would have sertonnectover this edge.

3.6 - Correctness

To prove correctness of the algorithm, we needhtavsthe following:
- Fragments indeed find their minimum-weight outgpedges
- No deadlocks

The paper does not prove the first claim formdhgeed, proving
correctness in distributed algorithms sometimekdaice formality we
are used to in centralized algorithms.



As for deadlocks, notice that some nodes may waitdsponses after
they sentestor connect This is the reason that the issue of deadlocks is
brought up here. Deadlock could happen if all n@teswaiting for some
action to take place.

Assume that the algorithm has started but notigesifed. This means

that there exist fragments, which are not sleepoaes. Consider the
fragment with the lowedéveland with the smallest minimum-weight
outgoing edge, excluding zelevelsleeping nodes (there exists such
fragment since the algorithm has started). Th@Walg cases are
possible:

When sending testmessage:
- case ia sleeping node awakens, and that node may raotitst
algorithm
- case 2thetestis responded to without waiting (since it reaches
higher or equal level fragment — remember we clioséragment
with the lowest level)
When sendingonnect
- case ia sleeping node awakens, and that node may raotitst
algorithm
- case 2theconnectreaches a higher level fragment
- case 3theconnectreaches a fragment with the same level

In the last two cases, a higher level fragmenbiséd, and therefore
there exists some fragment which is now the “neafjiment with the
lowest level and with the smallest minimum-weightgwing edge (in
case 3 this occurs since its outgoing edge is nieenoth the lowest
weight among outgoing edges of all of the fragmanthis level.
Therefore it is also a minimum weight outgoing edféhe fragment on
the other side).

We went over all the cases in which a deadlockacbappen, and
showed that in each one either there is no waiting, new node
awakens.

3.7 - Communication Cost

Notice that in a levdl component there are at leastnodes (easy to
prove by induction). If this is the case, the maxmmlevel possible for
any fragment isog, N .

We now determine an upper bound for the numberesfsages.
Recall that the types of messages used by theithligoare:

- reject

- accept



- test (partitioned here for analysis purposesitesssfutest, which
are replied by aacceptand failedtest, which are replied by
rejecy.

- initiate

- connect

- report

- change-core

First we give an upper bound on the number of ngessaf typaeject
and failedtestthroughout the whole execution of the algorithreii, we
consider a single node at a specific level, anchtcthe outgoing
messages of typsnnect, report, change-corandsuccessfulest,and
the incoming messages of typeceptandinitiate. This will give us an
upper bound on the number of messages transmitigtdr to that node
at that level.

An edge can be reject@aly once. Rejection requires two messages:
failedtestandreject (or possibly two failedesty. So we haveR2
messages so far counted.

A node in any level beside 0 and the last can vecai most on@itiate

and oneacceptmessage. It can transmit at most one successiul
message, oneportmessage and ommhange-cor@r connecimessage. A
node can go through at most jbig 1 levels (not counting level 0 and the
last). These sum up to anoth&i(lpg,N-1) messages.

At level 0, a node can receive at most onigate message, and transmit
at most oneonnecimessage (@ messages). At the last level, each node
can send at most omeport messageN messages).

This counting brings us ®E + 5N(log,N -1) + 3N < Z + N(log,N)

Finally, notice that the most complex message ematlyorithm contains
one edge weight, one level between 0 angNpgnd 3 bits to indicate the
message type. The total number of bits a messagéees is therefore

log, w,,,+109,8N .

We said before that a lower level fragment nevatsaan a higher level
fragment and that a higher level fragment is madedit by a lower level
fragmentWhat if we reversed things? What if a higharel fragment at
level L’ will not wait on a lower level fragment at leue?

To answer this, consider the following example:

0@ -0




If the nodea wakes up first, it sends connectaadhena andb form a
new fragment ievel 1. From now on, this fragment will setebstfrom
its rightmost node to the node on its right. Thadewill wake up, and
sent connect back to the node which sent theltatr it will also send
acceptsince they share the minimum weight outgoing extgthe high
levelfragments are not made to wait. But since we dti@dethe small
level fragment wait, the*llevel fragment will forward theeportto the
left, until it reaches the core (which remains ¢dge with weight 1 at all
times). Now, a&hange-coranessage will be forwarded from tbere
nodeon the right, and will result in anitiate message when it reaches
the “front” of the fragment. In other wordschange-coranessage is
transmitted throughout the fragment in one diregtand an initiate is
transmitted back to the other direction. This hayigpga “cycles”, each in
which the fragment expands one node to the righth& number of
messages sent is the sum of an arithmetic seritharefore i®(N?).

3.8 - Timing Cost
In the general case we can easily find examplesenihe time
complexity iS@(NZ). An example for such a case as appears in the:pape

Node S originally awakens, and forms a 1 levelrfragt with node S'.
Node 0 is now awakened, and forms a separslevelfragment with
node 1. The last fragment is now expanded eachitiraee node to the
right; it first absorbs node 2, then node 3, andredn this example, each
node sequentially sends test and receives refmti évery « j-2 before

j’>j is awakened, and therefore the time compleistg(N?).

However, if all nodes awaken originally, time comypty is ONIogN).



Awakening all nodes can be done at the beginniray mostN-1 time
units. By timeN — each node will wake up and searmhnectand by time
2N each node will be at level 1.

Claim: By time 3N — 3N each node is dtvell.
Proof by induction:
True forl=1.
Assume all nodes are at levddy 9N — 3\.
- each node can send upNdestmessages N time units)

- these messages are answered. N tinfe units)
- all nodes send report to the core. N titne units)
- the core nodes spread out change-core.N tinfe units)
- initiate may be sent as a result N t{me units)

The longest time (if all the above happens sedaigntit
takes for the above messages to be sent is S5Nstaps.
(5IN — 3N) + 5N = 5(1+1)N — 3\.

At the last level onlyest, rejectindreportmessages are sent (tot&l)3
Sincel <log, N, the algorithm is complete by time:

GN - 3N+ 3N < 5Nlog, N

This concludes the review of the distributed minimspanning tree
algorithm.

Attached in the next 2 pages is the actual codewisiexecuted at each
of the nodes.



The Algorithm (As Executed at Each Node)

(1) Response to spontaneous awakening (can octuaba node in the sleeping
state)
execute procedurgakeup

(2) proceduravakeup
begin let m be adjacent edge of minimum weight;
SE (m )& Branch;
LN < 0O;
SN < Found;
Find-count< O;
sendConnect(O)pn edge m
end

(3) Response to receipt @bnnect(L)on edge |
begin if SN = Sleepinghen execute proceduneakeup;
if L< LN
then beginSE (j) €< Branch;
sendnitiate(LN, FN, SNpn edge j;
if SN = Findthen
find-coun& find-count + 1
end
else ifSE(j) = Basic
then place received message on end of queue
else sendnitiate(LN + 1, w(j), Find)on edge j
end

(4) Response to receipt Iofitiate (L, F, S) on edge |
beginLN €< L; FN € F; SN< S; in-branch< j;
best-edg€é- nil; best-wt& oo
for all i # j such thaSE(i) = Branch
do begin senthitiate(L, F, S)on edge i;
if S = Findthenfind-count< find-count + 1
end;

if S = Findthen execute proceduiest

end

(5) procedurgest
if there are adjacent edges in the sBsdsic
then begirtest-edge& the minimum-weight adjacent edge in state
Basic;
sendlest(LN, FNpntest-edge
end
else begirtest-edge& nil; execute procedumeportend



(6) Response to receipt dést(L, F)on edge j
begin if SN = Sleepinghen execute proceduneakeup;
if L >LN then place received message on end of queue
else ifF # FNthen send\ccepton edge |
else begin ifSE (j) = BasiadhenSE (j) & Rejected;
if test-edge® j then sendRejecton edge |
else execute procedumest
end
end

(7) Response to receipt Atcepton edge j
begintest-edge< nil;
if w(j) < best-wt
then begirbest-edge& j; best-wt< w(j) end;
execute procedumeport
end

(8) Response to receipt Bejecton edge |
begin if SE (j) = BasidhenSE (j) €& Rejected;
execute procedutest
end

(9) procedureeport
if find-count = Oandtest-edge = nil
then begirBN < Found,
sendReport(best-wtpnin-branch
end

(10) Response to receiptieport(w)on edge |
if j # in-branch
then begirind-count< find-count - 1
if w <best-wtthen begirbest-wt& w; best-edge&- | end;
execute procedureport
end
else ifSN = Findthen place received message on end of queue
else if w >best-wt
then execute proceduckange-core
else if w =best-wt= c then halt

(11) procedurehange-core
if SE (best-edge) = Branch
then sencChange-coren best-edge
else begin sen@onnect(LN)on best-edge;
SE (best-edge§- Branch
End

(12) Response to receipt Ghange-core
execute procedurechange-core



