
A distributed algorithm for 
minimum weight spanning trees 

 
 

R. G. Gallager, P. A. Humblet and 
P. M. Spira 

 
 
 
 

Prepared by: 
Guy Flysher and Amir Rubinshtein





Preface 
 
In this document we will review Gallager, Humblet and Spira's 
distributed algorithm for minimum weight spanning trees. 
In centralized algorithms (as opposed to distributed ones) we know of 
many simple algorithms that find a MST. In the distributed model 
however, things are more complex since there is no "entity" that knows 
the topography of the entire graph. In this algorithm we will assume that 
each node knows only the weights of its adjacent edges. The algorithm 
displayed will be uniform (all nodes run the exact same code) and will 
require up to 25 log 2N N E+  messages where each message takes not more 
than 2 max 2log log 8w N+  bits ( maxw  being the maximum weight in the graph). 
 
1. Problem definition 
 
In the problem of the minimum spanning tree, we are given an undirected 
graph with N nodes and E edges. Each node represents a processor (on 
which the algorithms code is executed) and each edge represents a 
bidirectional communication channel (messages can be transmitted 
independently in both directions of an edge). We will assume that all 
messages arrive after a finite but unpredictable delay, without errors and 
in sequence (FIFO). We will also associate a weight which is finite and 
distinct with each edge. 
The question arises, why is the demand for distinct weights needed? This 
question will be answered in section 2.2. Another question that might 
arise is how can one "create" distinct weights when the original weights 
are not distinct. 
 
1.1 Making the weights distinct 
If all the nodes have distinct identities then we can use these identities to 
make the edges' weights distinct. We do this by concatenating the 
identities of the neighboring nodes of each edge to its weight. 
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We arbitrarily choose if throughout the algorithm the smaller identity 
appears first or the larger one in order to assure both nodes are in 
agreement over the edge's weight. 
A natural approach is to try and have the nodes select random identities 
and send a message with these identities to their neighbors notifying them 
of the selection. Once all nodes have chosen distinct identities we can 
apply the method shown above. While the expected number of tries 
needed to reach a situation where all the identities are distinct can be as 
small as we want (By having the identities chosen from a larger set), the 
probability of failure after any amount of attempts is not zero. Therefore, 
this approach will leave us with a random algorithm where we can only 
bound the expected complexity. 
 
If we do not have distinct weights nor distinct identities, no deterministic 
uniform algorithm exists for the MST problem. 
We can easily be persuaded of this fact by the following example: 

 
Every two edges make up a MST. Since the algorithm is uniform and 
each node has exactly the same information as the others, clearly there is 
no way to choose specific two of the three. 
 
2. Review of spanning trees 
 
We define a fragment of a MST as a sub-tree (that is, a connected set of 
nodes and edges of the MST). Given a graph and a fragment of a MST, 
we define an outgoing edge as an edge with exactly one end in the 
fragment. 
 
2.1 - Property 1: Given a fragment of a MST, let e be a minimum weight 
outgoing edge of the fragment. Joining e and its adjacent non-fragment 
node to the fragment yields another fragment of a MST (not necessarily 
the same MST the original fragment was part of). 
 
Proof: Suppose e is not in any MST containing the fragment. By 
definition adding any edge to a MST will create a cycle, in particular 
adding e will create a cycle. e is an outgoing edge therefore it leads out of 
the fragment. Since the cycle passes through the fragment (it has a part 
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which is outside the fragment and a part which is inside the fragment) 
there must be another outgoing edge with respect to this fragment which 
is part of the cycle, we shall mark it as a. Since e is the fragment's 
minimum weight outgoing edge we can deduce ( ) ( )w e w a≤ . If we remove 
a, we are left with a connected graph without cycles therefore a tree. We 
did not increase the total weight of the tree (by adding e and removing a) 
therefore this new tree must also be a MST.   
 
2.2 - Property 2: If all edges of a connected graph have different weights, 
then the MST is unique. 
 
Proof: Suppose there are 2 different MSTs. 
Let e be the minimum weight edge such that e belongs to one MST (T') 
and not the other (T). Since T is a tree, adding e will create a cycle. At 
least one of the edges along the cycle does not appear in T'. This is true 
since if all the edges on this cycle appear in T', then T' contains a cycle 
which is a contradiction to T' being a tree. Removing one of the edges 
along the cycle which do not appear in T' will leave us with a tree whose 
total weight is lower than that of T (since e is the minimum weight edge 
that appears in only one of the trees and all weights are distinct) in 
contradiction to T being a MST.  
 
3. The algorithm 
 
3.1 - The idea 
In this section we will talk about the general idea of the algorithm. The 
details about how the actions described below are accomplished appear in 
section 3.3. 
 
The idea of the algorithm will be based on the two properties above. We 
start with N fragments containing a single node. Using property 1 we can 
enlarge the fragments. Property 2 assures us that when two fragments 
have a common node; their union is also a fragment. This follows from 
the fact that both original fragments were part of a MST and the "new" 
fragment is also part of a MST. Since there is only one possible MST 
they both belong to the same MST and so does the new combined 
fragment. 
In the algorithm to follow each fragment finds its minimum weight 
outgoing edge (asynchronously) and tries to combine with the fragment 
on the other side of the edge. The way this is done depends on the 
fragments' level.  
A fragment containing a single node is at level 0. 
 



• Case 1: If two fragments have the same level L and the same 
minimum weight outgoing edge, they combine to form a new 
fragment at level (L+1). 

 
 

The shared minimum weight outgoing edge is called the new 
fragment's core and its adjacent nodes are called the core nodes. 

 
• Case 2: If fragment F is at level L and fragment F’  at level L’>L is 

at the other end of F’s minimum outgoing edge, then fragment F is 
absorbed by F’ (the level remains L’ ). 

 
The rule of thumb (The logic behind it will be explained in section 
3.7) is: A low level component is never kept waiting. 
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Comment: If fragment F is at level L and fragment F’  at level L'<L is at 
the other end of F’s minimum outgoing edge then no absorption occurs. 
 
 
3.2 - Preliminaries 
 
The nodes: Each node can be in one of three states: Sleeping, Find and 
Found where Sleeping is the initial state of all nodes. The node will be in 
state Find when looking for the minimum weight outgoing edge of the 
fragment it belongs to and in state Found at all other times. The algorithm 
starts when one or more nodes spontaneously awaken. A node may also 
be woken up by the receiving of a message. 
 
The edges: For each edge e=(u,v) nodes u and v will have a variable with 
the edge’s state which can be one of the following three:  

1. Rejected – The edge is not part of the MST. 
2. Branch – The edge is a part of the MST. 
3. Basic – The algorithm has not yet decided whether the edge is part 

of the MST or not. 
 
3.3 - Finding the minimum weight outgoing edge 
 
A zero level fragment (which always consists of a single node) performs 
the following algorithm upon awakening: 

1. It chooses its minimum weight adjacent edge. 
2. It marks it as a branch of the MST. 
3. It sends a “Connect(0)” message on this edge (we will explain this 

in greater detail later). 
4. It goes into state Found (waiting for a reply from the node on the 

other side). 
 
According to property 1 and property 2 we know that the minimum 
weight outgoing edge of a fragment consisting of a single node belongs to 
the unique MST. 
 
In the case of nonzero fragment let us assume that two L-1 fragments 
have just merged to form a new fragment at level L where the weight of 
the new component’s core, w(e) is the new component’s identity. An 
initiate message containing the fragments identity, its level and the 
argument find is sent from the core nodes along the fragment's branch 
edges (and only these edges). The message is passed on to all the 
fragments nodes through flooding (similar to the PI protocol). Upon 



receiving such a message a node becomes aware of the merging which 
has occurred and of the new identity and level of the fragment. 
An important observation is that if there are components of level L-1 
waiting to connect to the fragment, the nodes floods the initiate message 
to them as well (and in the same way if there are other L-1 fragments 
waiting to connect to it, it floods the message to them as well). The logic 
behind this is the rule of thumb we mentioned earlier. This L-1 fragment 
asked to be connected to one of the two L-1 level fragments which have 
just merged and was not yet answered, which is allowed. Now however it 
has become a lower level fragment since the new fragments level is L. 
Therefore it must be absorbed immediately. The initiate message does 
exactly that. 
 
Each node, after receiving the initiate message with the argument find 
starts looking for its minimum weight outgoing edge. It does so by 
sending out a message called test on the minimum weight basic edge 
adjacent to it. The test message contains the fragments id and level. A 
node receiving a test message does the following: 

• If the id in the message is the same as the id of the fragment the 
node belongs to – a reject message is sent back (*) 

• If the id in the message differs from the id of the fragment the node 
belongs to and the level in the message is lower or equal to that of 
the node's fragment – an accept message is sent back. 

• If the id in the message differs from the id of the fragment the node 
belongs to and the level in the message is higher than that of the 
node's fragment – no reply is sent until the situation has changed. 

 
(*) an exception to this rule is when the node that sent the test message 

receives a test message along the same edge with the same id. In such 
a case a reject message is not sent (the other side would get the 
message sent by this node and know that this edge is not an outgoing 
edge). This is done in order to obtain a small decrease in message 
complexity. 

 
If the node which sent the test message received a reject message, it 
marks the edge as rejected and moves on to try the next basic edge with 
the minimum weight adjacent to it. 
 
After a node has found its minimum weight outgoing edge (or found that 
it has no adjacent basic edges left) it waits for a report message from all 
the nodes it flooded the initiate message to (similar to the 
acknowledgment part in PIF). After receiving all of these messages it 
sends back a report message back to the node from which it received the 



initiate message. The report message contains the minimum between the 
weight of the outgoing edge found by the node itself and the minimum 
found by all the nodes which sent the report messages back. This process 
continues until the report messages reach the core nodes. The two core 
nodes exchange report message and at this point, both core nodes know 
through which of their edges the path to the minimum outgoing edge 
passes. 
 
3.4 – Changing the core 
After both core nodes know through which edge the minimum outgoing 
edge can be reached, the core node which is "closer" to the minimum 
outgoing edge sends a message called change-core. The change-core 
message is sent to all the nodes on the path from the core node to the 
minimum outgoing edge (each node knows through which edge it should 
pass the message according to the report messages). When the change-
core reaches the node which found the minimum outgoing edge, this node 
sends a connect message along this edge which contains the fragment's 
level. This message notifies the fragment on the other side of the edge 
that this fragment whishes to merge/be absorbed by it. 
We only pass the change-core message through the nodes on the path 
from the core-nodes to the minimum outgoing edge and the question 
arises, do the other nodes not need to know of this change. The answer is 
no as can be seen in the image below. 

 
As we can see changing the "direction" of the edges along the path will 
cause all messages being sent to the old core to be diverted to the new 
core (in reality a change in  direction is simply the nodes knowing of the 
change, sending messages along the edge in this direction). 
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3.5 - Connecting fragments 
The rules for joining fragments in the algorithm are: 
 
If two fragments at level L have the same minimum outgoing edge, each 
sends the message connect(L) over this edge, one in each direction (this 
was mentioned earlier in section 3.4, when we discussed what happens 
after change-core reaches the nodes adjacent to the minimum outgoing 
edge). This edge now becomes the core for the component with level 
(L+1). New initiate messages are sent by the new core’s nodes and the 
process of finding the minimum weight outgoing edge starts over. 
 
What happens when a connect message from node n in a low level 
fragment with level L and identity F reaches a node n’ in a higher level L’ 
with identity F’? As we said before a lower level fragment never waits. 
Node n’ immediately sends back an initiate message with parameters F’ 
and L’ to n (which is flooded to all nodes in F, effectively causing 
fragment F to be absorbed in F’ by updating the information in its nodes 
to that of the new fragment). 
 
The message initiate contains, in addition to the mentioned parameters 
(level and fragment identity) a third parameter: the state of the node 
sending it (i.e. find or found).  
If the node sending the initiate has not yet sent its report, then its state 
must be Find, and the parameter it sends is therefore Find. This causes 
fragment F to join the search (The node will not send report until it also 
receives a report message from the joining fragment). 
If the node sending the initiate had already sent its report, then its state 
and the parameter it sends must be Found. Since it had already sent its 
report, the edge on which the initiate was sent was not its minimum 
outgoing edge. Therefore, fragment F does not need to join the search. 
Indeed, notice that it’s not possible that fragment F has an outgoing edge 
with a lower weight than the minimum outgoing edge of F’ (the edge 
connecting F to F’), since then F would have sent connect over this edge. 
 
3.6 - Correctness 
To prove correctness of the algorithm, we need to show the following: 

- Fragments indeed find their minimum-weight outgoing edges 
- No deadlocks 

 
The paper does not prove the first claim formally. Indeed, proving 
correctness in distributed algorithms sometimes lacks the formality we 
are used to in centralized algorithms. 



As for deadlocks, notice that some nodes may wait for responses after 
they sent test or connect. This is the reason that the issue of deadlocks is 
brought up here. Deadlock could happen if all nodes are waiting for some 
action to take place. 
Assume that the algorithm has started but not yet finished. This means 
that there exist fragments, which are not sleeping nodes. Consider the 
fragment with the lowest level and with the smallest minimum-weight 
outgoing edge, excluding zero-level sleeping nodes (there exists such 
fragment since the algorithm has started). The following cases are 
possible: 
 
When sending a test message:  

- case 1: a sleeping node awakens, and that node may now start its 
algorithm 

- case 2: the test is responded to without waiting (since it reaches a 
higher or equal level fragment – remember we chose the fragment 
with the lowest level) 

When sending connect :  
- case 1: a sleeping node awakens, and that node may now start its 

algorithm 
- case 2: the connect reaches a higher level fragment 
- case 3: the connect reaches a fragment with the same level 

 
In the last two cases, a higher level fragment is formed, and therefore 
there exists some fragment which is now the “new” fragment with the 
lowest level and with the smallest minimum-weight outgoing edge (in 
case 3 this occurs since its outgoing edge is the one with the lowest 
weight among outgoing edges of all of the fragments at this level. 
Therefore it is also a minimum weight outgoing edge of the fragment on 
the other side).  
We went over all the cases in which a deadlock could happen, and 
showed that in each one either there is no waiting, or a new node 
awakens. 
 
3.7 - Communication Cost 
Notice that in a level L component there are at least 2L  nodes (easy to 
prove by induction). If this is the case, the maximum level possible for 
any fragment is 2log N . 
We now determine an upper bound for the number of messages.  
Recall that the types of messages used by the algorithm are: 

- reject 
- accept 



- test (partitioned here for analysis purposes to successful test, which 
are replied by an accept and failed test, which are replied by 
reject). 

- initiate 
- connect 
- report 
- change-core 

 
First we give an upper bound on the number of messages of type reject 
and failed test throughout the whole execution of the algorithm. Then, we 
consider a single node at a specific level, and count the outgoing 
messages of type connect, report, change-core, and successful test, and 
the incoming messages of type accept and initiate. This will give us an 
upper bound on the number of messages transmitted from or to that node 
at that level. 
 
An edge can be rejected only once. Rejection requires two messages: 
failed test and reject (or possibly two failed tests). So we have 2E 
messages so far counted.  
A node in any level beside 0 and the last can receive at most one initiate 
and one accept message. It can transmit at most one successful test 
message, one report message and one change-core or connect message. A 
node can go through at most log2N - 1 levels (not counting level 0 and the 
last). These sum up to another 5N(log2N-1)  messages. 
At level 0, a node can receive at most one initiate message, and transmit 
at most one connect message (2N  messages). At the last level, each node 
can send at most one report message (N  messages).  
This counting brings us to 2E + 5N(log2N -1) + 3N  < 2E + N(log2N) 
Finally, notice that the most complex message in the algorithm contains 
one edge weight, one level between 0 and log2N, and 3 bits to indicate the 
message type. The total number of bits a message requires is therefore 

2 max 2log log 8w N+ . 
 
We said before that a lower level fragment never waits on a higher level 
fragment and that a higher level fragment is made to wait by a lower level 
fragment.�What if we reversed things? What if a higher level fragment at 
level L’ �will not wait on a lower level fragment at level�L? 
To answer this, consider the following example: 
 

 
 

a b c  
1 2 3 



If the node a wakes up first, it sends connect to b, then a and b form a 
new fragment in level 1. From now on, this fragment will send test from 
its rightmost node to the node on its right. That node will wake up, and 
sent connect back to the node which sent the test. Later it will also send 
accept since they share the minimum weight outgoing edge and the high 
level fragments are not made to wait. But since we are letting the small 
level fragment wait, the 1st level fragment will forward the report to the 
left, until it reaches the core (which remains the edge with weight 1 at all 
times). Now, a change-core message will be forwarded from the core 
node on the right, and will result in an initiate message when it reaches 
the “front” of the fragment. In other words a change-core message is 
transmitted throughout the fragment in one direction, and an initiate is 
transmitted back to the other direction. This happens in “cycles”, each in 
which the fragment expands one node to the right. So the number of 
messages sent is the sum of an arithmetic series and therefore is ( )2NΘ . 

 
 
3.8 - Timing Cost 
In the general case we can easily find examples where the time 
complexity is ( )2NΘ . An example for such a case as appears in the paper: 

 

 
 
Node S originally awakens, and forms a 1 level fragment with node S’. 
Node 0 is now awakened, and forms a separate 1st level fragment with 
node 1. The last fragment is now expanded each time in one node to the 
right; it first absorbs node 2, then node 3, and so on. In this example, each 
node sequentially sends test and receives reject from every i≤ j-2 before 
j’>j is awakened, and therefore the time complexity is ( )2NΘ . 

However, if all nodes awaken originally, time complexity is O(NlogN). 
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Awakening all nodes can be done at the beginning in at most N-1 time 
units. By time N – each node will wake up and send connect, and by time 
2N each node will be at level 1. 
 
Claim: By time  5lN – 3N each node is at level l. 
Proof by induction: 
 True for l=1. 
 Assume all nodes are at level l by 5lN – 3N. 
 - each node can send up to N test messages  (N time units) 
 - these messages are answered.   (N time units) 
 - all nodes send report to the core.  (N time units) 
 - the core nodes spread out change-core. (N time units) 
 - initiate may be sent as a result   (N time units) 
 The longest time (if all the above happens sequentially) it 
 takes for the above messages to be sent is 5N time steps.  
 (5lN – 3N) + 5N = 5(l+1)N – 3N. 
 
At the last level only test, reject and report messages are sent (total 3N). 
Since 2logl N≤ , the algorithm is complete by time: 
      5lN – 3N + 3N  ≤  25 logN N  
 
This concludes the review of the distributed minimum spanning tree 
algorithm. 
Attached in the next 2 pages is the actual code which is executed at each 
of the nodes. 



The Algorithm (As Executed at Each Node) 
 
(1) Response to spontaneous awakening (can occur only at a node in the sleeping 
state) 

execute procedure wakeup 
 

(2) procedure wakeup 
begin let m be adjacent edge of minimum weight; 
SE (m ) �  Branch; 
LN � 0; 
SN � Found; 
Find-count � 0; 
send Connect(O) on edge m 

      end 
 
(3) Response to receipt of Connect(L) on edge j 

begin if SN = Sleeping then execute procedure wakeup; 
if L < LN 
  then begin SE (j) � Branch; 

      send Initiate(LN, FN, SN) on edge j; 
      if SN = Find then 
           find-count �  find-count + 1 

           end 
else if SE(j) = Basic 

then place received message on end of queue 
else send Initiate(LN + 1, w(j), Find) on edge j 

end 
 
(4) Response to receipt of Initiate (L, F, S) on edge j 

begin LN � L; FN � F; SN � S; in-branch � j; 
           best-edge �  nil; best-wt � ∞ ; 

for all i ≠ j such that SE(i) = Branch 
    do begin send Initiate(L, F, S) on edge i; 

     if S = Find then find-count � find-count + 1 
         end; 
if S = Find then execute procedure test 

end 
 

(5) procedure test 
if there are adjacent edges in the state Basic 

then begin test-edge � the minimum-weight adjacent edge in state 
Basic; 

    send Test(LN, FN) on test-edge 
         end 

else begin test-edge � nil; execute procedure report end 
 



(6) Response to receipt of Test(L, F) on edge j 
begin if SN = Sleeping then execute procedure wakeup; 
          if L > LN then place received message on end of queue 

else if F ≠  FN then send Accept on edge j 
else begin if SE (j) = Basic then SE (j) � Rejected; 

    if test-edge ≠  j then send Reject on edge j 
else execute procedure test 

        end 
            end 
 
(7) Response to receipt of Accept on edge j 

begin test-edge � nil; 
if w(j) < best-wt 
    then begin best-edge � j; best-wt � w(j) end; 
execute procedure report 

end 
 
(8) Response to receipt of Reject on edge j 

begin if SE (j) = Basic then SE (j) � Rejected; 
execute procedure test 

end 
 

(9) procedure report 
if find-count = 0 and test-edge = nil 
   then begin SN � Found; 

       send Report(best-wt) on in-branch 
end 
 

(10) Response to receipt of Report(w) on edge j 
if j ≠  in-branch 
   then begin find-count � find-count - 1 

      if w < best-wt then begin best-wt � w; best-edge � j end; 
      execute procedure report 
end 

   else if SN = Find then place received message on end of queue 
else if w > best-wt 

then execute procedure change-core 
else if w = best-wt = ∞  then halt 
 

(11) procedure change-core 
if SE (best-edge) = Branch 

then send Change-core on best-edge 
else begin send Connect(LN) on best-edge; 

   SE (best-edge) � Branch 
End 
 

(12) Response to receipt of Change-core 
execute procedure change-core 

 


