אוטומטים במספר

תרגיל מספר 13

במחסנית

конפיגורציה: (q, w, γ)

конפיגורציה התחלתי: (q_0, w, ⊥)

kube ע"ו, מצבים נוספים:

L_f(M) = \{w \in \Sigma^* | \exists p \in F, \gamma \in \Gamma^*, (q_0, w, \bot) \stackrel{\gamma}{\rightarrow} (p, e, \gamma)\}

kube ע"ו, רק può תמסות:

L_e(M) = \{w \in \Sigma^* | \exists p \in Q, (q_0, w, \bot) \stackrel{\gamma}{\rightarrow} (p, e, \gamma)\}
בנוסף המיסתת \(M \) המתקפל את השפה:

\[L = \{ ww^R \mid w \in \Sigma \} \]

\[L_\epsilon(M) = L \]

עם \(\Sigma = \{ a, b \} \)

- רעיון הבנייה: בונים עותק של \(w \) במחסנית, ולחותם אי
- וד withRouter על סיום קריאת \(w \) (מדיאת האמצע המילה),
- וממורשים את שארית הקלט ל말יה במחסנית.

בניית האוטומט

\[M = (\{ q_0, q_1 \}, \Sigma, \Sigma \cup \{ \bot \}, \delta, q_0, \bot, \emptyset) \]

\[\delta : \]

1. \(\delta(q_0, \sigma, \bot) = \{(q_0, \sigma)\}, \forall \sigma \in \Sigma \)
2. \(\delta(q_0, \sigma_1, \sigma_2) = \{(q_0, \sigma_1, \sigma_2)\}, \forall \sigma_1, \sigma_2 \in \Sigma \)
3. \(\delta(q_1, \sigma, \sigma) = \{(q_1, \sigma)\}, \forall \sigma \in \Sigma \)
4. \(\delta(q_1, \sigma, \sigma) = \{(q_1, \sigma)\}, \forall \sigma \in \Sigma \)
5. \(\delta(q_0, \epsilon, \bot) = \{(q_0, \epsilon)\} \)

כוננות (يسرוי)

\[L \subseteq L(M) \]

בירית מילה \(ww^R \in L \) איך תיראה ריצה מקבילה?

\[L(M) \subseteq L \]

בירית תשוב של האוטומט, אם המיסתת ריקה או

הмиילה בשפה
2 דוגמא
مثال: נתון המצב המופנה הבא:

\[M = (\{q_0\}, \{a,b,c\}, \{a,b,c\} \cup \{\bot\}, q_0, \bot, \emptyset) \]

\[\delta(q_0, a, \sigma) = (q_0, a \sigma) \]

\[\delta(q_0, b, \sigma) = (q_0, a \sigma) \]

\[\delta(q_0, c, a) = (q_0, \varepsilon) \]

המקבל "ע", ריקון.
א. מהי שערת האוטומטים? דמנה
ב. כתבו דרדרו של השערת ריקה

2 דוגמא
פתרון:

\[L = \{ w \in \{a, b, c\}^* \mid \#_c(w) = \#_a(w) + \#_b(w) \land \]

for every prefix \(u \) of \(w: \)

\[\#_c(u) \leq \#_a(u) + \#_b(u) \}\]

2 דוגמא
דוגמה: דקדוק המובן \(L \):

\[G = (\{S\}, \{a, b, c\}, P, S) \]

\[P: S \rightarrow aSc | bSc | SS | \varepsilon \]
בעיית הכרעה

בהינתן אוטומט או ביטוי רגולרי (לעילינו גם קלט
ומסו), אנו מעוניינים לדעת אם שפתו סופית
וטבע

כפתרון לבעיית הכרעה علينا להציע אלגוריתם
שיקבל כל קלט ומחזיר כפלט "כן"/"לא".

אלא 우리가 דרשו_liを持っている הקונסטרוקטיב.
לעadroジー להיתוך (francais),
אלא 우리가 זכרים להיתוך נוספים
ולא TSRMLS להיתוך עליל.

11 דוגמא לבעיית הכרעה
קלט: אס"ד

בהינתן שפה רגולרית \(L\) ו- אס"ד \(A\) המבנה את \(L\), לאולוריר רפורמי או שיאלה עתיקה של מילה \(w\) לשפת \(\text{Prefix}(L)\).

כיסא רואים:
נשייה \(w\) לא הכדרום האופטימי בוארי של \(A\) \(A\) ו- דריה אל \(\text{Pref}\(\text{x}(L)\)
ולמי \(A\) המבנה \(w\) לשפת \(\text{ Prefix}(L)\)
ניח \(A\) אוכזים \(w\) מחזירplements באה \(A\).

למה \(w\) בריקה?\

משתנה: זמך ראובן \(A\) \(A\) \(A\) ו- חסינה (לידית התאום)

12 דוגמא לבעיית הכרעה – המ démarch
קלט: אס"ד

פתרון עלי

ירהיא את האוטומט \(L\) \(L\) \(L\) DFS המחבר שבשብיחיה קירא \(K\) \(L\)
חפוש במד \(K\) \(K\) \(K\)
ואנם במד \(K\) \(K\) \(K\)
ולא \(K\) \(K\) \(K\)

זמנה: פולימיאלי (בכר המילה \(K\) \(K\) \(K\))
דוגמה לבעיית הכרעה

קלט: ב"ר

 JTextField בותר רוגליר 2 מעל א"ב [0,1]:

הארכה אגודה ומכירה האמה L[r] של כל מתלה ב-0.

trer: נגרד אם ברה בולאיון (r) המבוקש ב"ר מעל א"ב [0,1].

נמוץ הכסף שלבו האמה L[r] של כל מתלה ב-0.

נשם ממוקד וזר נflammatory ב"ר בולאיון [0,1].

לזרך זה המפריך לחום של בולאיון כולאיון מספק:

\(e \in L[r] \) - בולאיון מ トラ מעל א"ב [0,1]: פלט:.staff (אמה).

\(L[r] = \emptyset \) - בולאיון מ トラ מעל א"ב [0,1]: פלט: staff = 0.

הערה: דן לפורט ג"ע "תרומת" הכסף של vehículoめ פלט שאולות.