תרגיל: בנו אוטומט אי-דטרמיניסטי עבור השפה הבאה מעל \(\Sigma \) והוכיחו את נכונות בנייתכם.

\[L = \{ u \sigma v \sigma w \mid u, v, w \in \Sigma^* \land \sigma \in \Sigma \} \]

בניה:

נבנה אוטומט באופן הבא:

\[A = (Q, \Sigma, q_0, \delta, F) \]

\[Q = \{ q_0, q_f \} \cup \{ q_\sigma \mid \sigma \in \Sigma \} \]

\[F = \{ q_f \} \]

\[\delta(q_0, \sigma) = \{ q_0, q_\sigma \}, \forall \sigma \in \Sigma \]

\[\delta(q_\sigma, \tau) = \{ q_\sigma \}, \forall \sigma, \tau \in \Sigma : \sigma \neq \tau \]

\[\delta(q_\sigma, \sigma) = \{ q_\sigma, q_f \}, \forall \sigma \in \Sigma \]

\[\delta(q_f, \sigma) = \{ q_f \}, \forall \sigma \in \Sigma \]

הוכחת נכונות:

נשבה נא כדי להוכיח嵩ות םחיק יתור:

\[L = L(A) \]

\[L(q_0) = \Sigma^* \quad (1) \]

\[\forall q_\sigma \in Q, \quad L(q_\sigma) = \Sigma^* \{ \sigma \} \Sigma^* \quad (2) \]

\[L(q_f) = L \quad (3) \]

נוכח את太阳城יע תרי ד-כוניית.

כינוו רואט: בוכניי זה, רוכח בוינדרקיצי על ראורד הפיליה שלכל \(w \in \Sigma^* \) ומקקיוש ש-

\[q_0 \in \delta(q_0, w) \Leftrightarrow w \in \Sigma^* \quad (1) \]

\[\forall q_\sigma \in Q, \quad q_\sigma \in \delta(q_0, w) \Leftrightarrow w \in \Sigma^* \{ \sigma \} \Sigma^* \quad (2) \]

\[q_f \in \delta(q_0, w) \Leftrightarrow w \in L \quad (3) \]

בWebpack - אם \(|w| = 0 \) אזי נבדקה.

.\(w = \epsilon \) או \(w \notin \Sigma^* \).
נניח - nationwide-сужה outreach_upper: בודק תואר n, כאשר ומידה מבואר, נgross u = n + 1 נgross w, וכן של ש-

נحيح ש-ענות ע𝙇במיור MEDIA קאנ PREFIX. נgross w, U ∈ n - 1 נgross u, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w). נgross q0 ∈ δ(q0, w), A. נgross q0 ∈ δ(q0, u).

(1) נحيح ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w). נgross q0 ∈ δ(q0, w), A. נgross q0 ∈ δ(q0, u).

(2) נحيح ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w). נgross q0 ∈ δ(q0, w), A. נgross q0 ∈ δ(q0, u).

(3) נحيا ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w).

בנוסף - צ Kiev מ aument מחירים לעמדת ש-ערודע, כמו, u ש- נgross w בקפס עدعاء, עם q0. w ∈ e כ- δ(q0, w), (1)

עaned - nationwide-сужה outreach_upper: בודק תואר n, כאשר ומידה מבואר, נgross u = n + 1 נgross w, וכן של ש-

נحيح ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w). נgross q0 ∈ δ(q0, w), A. נgross q0 ∈ δ(q0, u).

(1) נحيح ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w). נgross q0 ∈ δ(q0, w), A. נgross q0 ∈ δ(q0, u).

(2) נحيح ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w). נgross q0 ∈ δ(q0, w), A. נgross q0 ∈ δ(q0, u).

(3) נحيا ש-ענות עmodx נgross U - ו ∈ n - 1 נgross w, ו ∈ n - 1 נgross w, A, נgross w = δ(q0, w).
님이.getHost 함수 A, הרקח הגננשת התיחודה לעמבר q0. מנו בפינכ, q0 ∈ δ(q0, w). לוכ חישור, ולפ הנחת האינדיקציה על תעה, q0 ∈ δ(q0, u). ממה של ש- u ∈ Σ* ו- w כנShar.

למעתה, דזור פושט הנקוח את תעה א) מברי אינדיקציה, ובו מספר פעמים איב, ומכה שדמתה ש- w ∈ Σ* ובכם כ- q0.

นมיקת של ו- שבקל כ-q0. בצמש

qf(b) = qf
qf(c) = qf
qf(d) = qf
qf(e) = qf
qf(f) = qf
qf(g) = qf
qf(h) = qf
qf(i) = qf
qf(j) = qf
qf(k) = qf
qf(l) = qf
qf(m) = qf
qf(n) = qf
qf(o) = qf
qf(p) = qf
qf(q) = qf
qf(r) = qf
qf(s) = qf
qf(t) = qf
qf(u) = qf
qf(v) = qf
qf(w) = qf
qf(x) = qf
qf(y) = qf
qf(z) = qf

בונת הנקוח את תעה א) דע (3), כל בפרה הנקוח את תעה, כלל ש- z Ferm ש- בך השלום את הנקחות部份. L(A) = L(qf) = L-

היוו המצב המקיב לחידב β, A, q0- צום ש-q0.