ออוטומטים דטרמינסטיים

אוטומט סופי

הפקולטה למדעי המחשב
 BGU

אסטרטגיות

תרגיל מספר 2

10/25/2012

© אריאל ירושביץ

1

אוטומטים דטרמינסטיים

אותו

A = \((Q, \Sigma, q_0, \delta, F) \)

לדוגמא: \(A = (Q, \Sigma, q_0, \delta, F) \)

\(Q \) - קבוצה סופית של מצבים

\(\Sigma \) - ב"א קלט

\(q_0 \) - מצב התחלתי

\(F \) - קבוצה סופית של מצבים

פונקציית מעברים: \(\delta \)

לדוגמה: \(\delta(q_0, a) = q_1 \)

תזכורות

נרחיב את הגדרת פונקציית המעברים: \(\delta \)

אם \(\delta(q, w) = \delta(q, w_1) \) עם \(w_1 \) ל"א ממקים

שפה של אוטומט \(A \): \(L(A) = \bigcup_{q \in F} L(q) \)

שפה של אוטומט \(A \): \(L(A) = \bigcup_{q \in F} L(q) \)

לע"א ממקים

10/25/2012

© אריאל ירושביץ

2
בניית אוטומטים

בית אוטומטים

ל委员 לשפות הבאות:

\[L_1 = \{ w \in \{a,b\}^* | \#_a(w) \text{ is even} \land \#_b(w) \text{ is even} \} \]

ואות השפה \{a,b,c\}

\[L_3 = \{ w \in \{a,b\}^* | \exists u \in \{a,b\}^*, w = ua \} \]

\[L_4 = \{ w \in \{a,b\}^* | \exists u \in \{a,b\}^*, w = auu \} \]

הוקחת שפה של אוטומטים:

\[L(A) = \{01\}^* \]

ל委员, \{01\}^*

ל委员 שפה בתוקף ייחודי:

נiciente טענות התוקף ייחודי:

\[L(q_0) = \{01\}^* \quad (1) \]

\[L(q_1) = \{01\}^*\{0\} \quad (2) \]

לאが必要 להוכחת \(q_2 \) כי הוא בור לא מכיל

© אריאל רוסביין