The formula states that if \(\delta(q, x) = 0 \), then \(\delta(q, xy) = \delta \left(\delta(q, x), y \right) \). This means that for any state \(q \), input letter \(x \), and output letter \(y \), the new state \(\delta(q, xy) \) is equal to the state \(\delta \left(\delta(q, x), y \right) \) which is defined recursively.

Causal:

1. Given a formal language \(L \) and a string \(x \) in \(L \), the string \(x \) is accepted by the automaton if there exists a path from the start state to a final state.
2. Given a formal language \(L \) and a string \(x \) in \(L \), the string \(x \) is accepted by the automaton if there exists a path from the start state to a final state.

The proof is by induction on the length of the string \(y \).

Base Case:
- For \(|y| = 0 \), the string is the empty string \(\epsilon \).
- The formula \(\delta(q, x\epsilon) = \delta(q, x) \) holds.

Inductive Step:
- Assume the formula holds for strings of length \(n \).
- Let \(y = y_1\sigma \), where \(\sigma \) is a single letter.
- The formula \(\delta(q, xy) = \delta \left(\delta(q, x), y \right) \) holds.

This completes the proof of the formula for all strings of any length.