SAT-Based Model Checking: IC3 and Lazy Abstraction

Verification course
Lecture 10, June 12, 2017

Part B
Incremental Construction of Inductive Clauses for Indubitable Correctness

or simply: IC3
A Simplified Description

“SAT-Based Model Checking without Unrolling”, Aaron Bradley, VMCAI 2011
Notations

• System is modeled as \((V, I, T)\), where:
 - \(V\) is a finite set of variables
 - \(I \subseteq 2^V\) is the set of initial states
 - \(T \subseteq 2^V \times 2^V\) is the set of transitions

 Suitable for hardware: \(V\) is over \(\{0, 1\}\)

• A safety property of the form \(AG P\)
 - \(P\) is a propositional formula over \(V\)
Induction for proving $\forall G \ P$

• The simple case: P is an **inductive invariant**
 - $I \Rightarrow P$
 - $P \land T \Rightarrow P'$

• **Notation**: P' – the value of P in the next state

• $I(V) \Rightarrow P(V)$
• $P(V) \land T(V, V') \Rightarrow P(V')$
Induction for proving AG P

- Usually, P is not an inductive invariant
- BUT – a stronger inductive invariant R may exist (strengthening)
 - I => R
 - R \land T => R'
 - R => P
- R can be computed in various ways (BDDs, k-induction, Interpolation-Sequence,...)
Inductive invariant
IC3

- The Goal: Find an Inductive Invariant stronger than P by learning relatively inductive facts (incrementally)

- Recall: F is inductive invariant if
 - I => F
 - F ∨ T => F'

- If F is stronger than P, i.e., F => P, then
 - F ∨ P ∨ T => F' => P'
What Makes IC3 Special?

• **No unrolling** of the transition relation T is required

• All previous approaches require unrolling
 - Searching for an inductive invariant
 - Unrolling = A form of strengthening

• **IC3 strengthens in a different way**
 - Learning relatively inductive facts locally
IC3 Basics

• Iteratively compute Over-Approximated Reachability Sequence (OARS) \(\langle F_0, F_1, \ldots, F_k \rangle \) s.t.
 - \(F_0 = \text{INIT} \)
 - \(F_i \Rightarrow P \) : \(P \) is an invariant up to \(k \)
 - \(F_i \Rightarrow F_{i+1} \) : \(F_i \subseteq F_{i+1} \)
 - \(F_i \land T \Rightarrow F'_{i+1} \) : Simulates one forward step

\(F_i \) - over-approximates the set of states reachable within \(i \) steps

• If \(F_{i+1} \Rightarrow F_i \) then fixpoint
IC3 Basics

• **P is inductive relative to F if**
 - $I \Rightarrow P$
 - $F \land P \land T \Rightarrow P'$

• **Notations:**
 - **Cube s**: conjunction of literals
 - $v_1 \land v_2 \land \neg v_3$ - Represents a state
 - s is a cube $\Rightarrow \neg s$ is a clause (DeMorgan)
OARS

\[R_1 = I \lor \text{Img}(I, T) \]

\[R_2 = R_1 \lor \text{Img}(R_1, T) \]
A Backward Search

• Search for a predecessor s to some error state: $P \land T \land \neg P'$
 - If none exists, property P holds:
 • $(P \land T \land \neg P')$ unsat IFF $(P \land T \Rightarrow P')$ valid

• Otherwise, try to block s
 - $P = P \land \neg s$
 - BUT, first need to show the s is not reachable
IC3 - Initialization

• Check satisfiability of the two formulas:
 - \(I \land \neg P \)
 - \(I \land T \land \neg P' \)

• If both are unsatisfiable then:
 - \(I \Rightarrow P \)
 - \(I \land T \Rightarrow P' \)

• Therefore
 - \(F_0 = I, F_1 = P \)
 • \(<F_0,F_1> \) is OARS
IC3 - Initialization
IC3 - Iteration

• Our OARS contains F_0 and F_1
 - If P is an inductive invariant - done! 😊
 - Otherwise:
 • F_1 should be strengthened
IC3 - Iteration

• P is not an inductive invariant
 - $F_1 \land T \land \neg P'$ is satisfiable
 - From the satisfying assignment get the state s that can reach the bad states
IC3 - Iteration

- Is s reachable or not?
 - Hard to know
 - If it is reachable a CEX exists
 - Why?
IC3 - Iteration

- Is s reachable in one transition from the previous set? (Bounded reachability)
 - Check $F_0 \land T \land s'$
 - If satisfiable, s is reachable from F_0 (CEX)
 - Otherwise, block it = remove it from F_1
 - $F_1 = F_1 \land \neg s$
IC3 - Iteration

- Iterate this process until $F_1 \land T \land \neg P'$ becomes unsatisfiable
 - $F_1 \land T \Rightarrow P'$ holds
 - F_2 can be defined to be P
 - Any problems/issues with that?
IC3 - Iteration

- New iteration, check $F_2 \land T \land \neg P'$
 - If satisfiable, get s that can reach $\neg P$
 - Now check if s can be reached from F_1 by $F_1 \land T \land s'$
 - If it can be reached, get t and try to block it
IC3 - Iteration

- To block t, check $F_0 \land T \land t'$
 - If satisfiable, a CEX
 - If not, t is blocked, get a “new” t by $F_1 \land T \land s'$
 - If it can be reached, get t^* and try to block it
 -You get the picture 😊
General Iteration
IC3 - Iteration

- Given an OARS \(<F_0, F_1, ..., F_k>\), define \(F_{k+1} = P\)
- Apply a backward search
 - Find predecessor \(s\) in \(F_k\) that can reach a bad state
 - Check \(F_k \land T \land \neg P'\)
 - If none exists \((F_k \land T \Rightarrow P')\), move to next iteration
 - If exists, try to find a predecessor \(t\) to \(s\) in \(F_{k-1}\)
 - \((F_{k-1} \land T \land s')\)
 - If none exists \((F_{k-1} \land T \Rightarrow \neg s')\), \(s\) is removed from \(F_k\)
 - \(F_k = F_k \land \neg s\)
 - Otherwise: Recur on \((t, F_{k-1})\)
 - We call \((t, k-1)\) a proof obligation
- If we can reach \(I\), a CEX exists
That Simple?

• Looks simple
• But this “simple” solution does NOT work
• It amounts to States Enumeration
 - Too many states...
• Does IC3 enumerate states?
 - In general - No.
 It applies generalization for removing more than one state at a time
 - Sometimes, yes (when IC3 does not perform well)
Generalization

Consider the case:

- State s in F_k can reach a bad state in one transition
- s is not reachable (in k transitions):
 - Therefore $F_{k-1} \land T \Rightarrow \neg s'$ holds
- We want to generalize this fact
 - s is a single state
 - Goal: Find a set of states, unreachable in k transitions
Generalization

• We know \(F_{k-1} \land T \Rightarrow \neg s' \)
• And, \(\neg s \) is a clause
• Generalization: Find a sub-clause \(c \subseteq \neg s \)
s.t. \(F_{k-1} \land T \Rightarrow c' \)
 - Sub clause means less literals
 - Less literals implies less satisfying assignments
 • \((a \lor b \lor c)\) vs. \((a \lor b)\)
 - \(c \Rightarrow \neg s\) - \(c\) is a stronger fact
• \(F_k = F_k \land c \)
 - More states are removed from \(F_k \), making it
 stronger/more precise (closer to \(R_k \))
Generalization

• How do we find a sub-clause \(c \subseteq \neg s \) s.t. \(F_{k-1} \land T \Rightarrow c' \)?

Options:
1. Trial and Error
 - Try to remove literals from \(\neg s \) while \(F_{k-1} \land T \land \neg c' \) remains unsatisfiable
2. Use the UnSAT Core
 - \(F_{k-1} \land T \land s' \) is unsatisfiable
Observation 1

• Assume a state s in F_k can reach a bad state in one transition

• Important Fact: s is not in F_{k-1} (!!)
 - $F_{k-1} \land T \Rightarrow F_k$
 - $F_k \Rightarrow P$
 - If s was in F_{k-1} we would have found it in an earlier iteration

• Therefore: $F_{k-1} \Rightarrow \neg s$
Inductive Generalization

- Assume a state s in F_k can reach a bad state in one transition
- Assume s is not reachable (in k transitions):
 - We get $F_{k-1} \land T \Rightarrow \neg s'$ holds
- BUT, this is equivalent: $F_{k-1} \land \neg s \land T \Rightarrow \neg s'$
 - Since $F_{k-1} \Rightarrow \neg s$

- This looks familiar!
 - $I \Rightarrow \neg s$
 - Otherwise, CEX! ($I \nRightarrow \neg s \Leftrightarrow s$ is in I)
 - $\neg s$ is inductive relative to F_{k-1}
Inductive Generalization

• Find \(c \subseteq \neg s \) s.t.
 \(F_{k-1} \land c \land T \Rightarrow c' \) and \(I \Rightarrow c \) hold

• Define \(F_k^* = F_k \land c \)

• Since \(F_i \Rightarrow F_{i+1} \),
 \(c \) is inductive relative to \(F_{k-1}, F_{k-2}, \ldots, F_0 \)
 - Add \(c \) to all of these sets
 - \(F_i^* = F_i \land c \)

• \(F_i^* \land T \Rightarrow F_{i+1}^* \) hold
Observation 2

• Assume a state s in F_i can reach a bad state in a number of transitions
• s is also in F_j for $j > i$, since $F_i \Rightarrow F_j$
• a longer CEX may exist
 – s may not be reachable in i steps, but it may be reachable in j steps
• If s is blocked in F_i, it must be blocked in F_j for $j > i$
 – Otherwise, a CEX exists
Push Forward

\[F_1 \rightarrow F_2 \rightarrow \cdots \rightarrow F_{k-1} \rightarrow F_k \rightarrow P \]
Push Forward - summary

• s is removed from F_i
 - by conjoining a sub-clause c:
 $$F_i = F_i \land c$$

• c is a clause learnt at level i
 Try to push it forward to $j \geq i$
 - If $F_j \land T \Rightarrow c'$ holds
 • c is implied by F_j in level $j+1$,
 $$F_{j+1} = F_{j+1} \land c$$
 - Else: s was not blocked at level $j > i$
 • Add a proof obligation (s,j)
 • If s is reachable from I, CEX!
IC3 - Key Ingredients

- **Backward Search**
 - Find a state s that can reach a bad state in a number of steps
 - s may not be reachable (over-approximations)

- **Block a State**
 - Do it efficient, block more than s
 - Generalization

- **Push Forward**
 - An inductive fact at frame i may also be inductive at higher frames
 - If not, a longer CEX is found
IC3 - High Level Algorithm

If I \land \neg P \text{ is SAT return false; // CEX}
If I \land T \land \neg P' \text{ is SAT return false; // CEX}
OARS = \langle I, P \rangle; // \langle F_0, F_1 \rangle
k=1
while (OARS.is_fixpoint() == false) do
 while (F_k \land T \land \neg P' \text{ is SAT}) do
 s = get_state();
 If (block_state(s, k) == false) return cex; // recursive function
 extend(OARS);
 push_forward();
 return valid;