Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2018-19
Lecture 12

8.1.19
Summary

• Explicit model checking

State explosion problem

• BDD-based symbolic model checking
• SAT-based Bounded Model Checking (BMC)
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry
example

Let M be a communication system in which there are exactly 20 wait steps between a send and an ack

$M :: s_0 \xrightarrow{send} s_1 \xrightarrow{wait} s_2 \xrightarrow{wait} s_{19} \xrightarrow{wait} s_{20} \xrightarrow{wait} s_{21} \xrightarrow{ack}$

M' includes all behaviors of M and more:

$M' :: s'_0 \xrightarrow{send} s_1 \xrightarrow{wait} s_{21} \xrightarrow{ack}$
Every path in M has a "representative path" in M'. Therefore, if we prove:

$M',s_0' \models A(\neg \text{ack W send})$

We can conclude that also:

$M,s_0 \models A(\neg \text{ack W send})$
example

Since M' has more paths, if $M',s'_0 \not\models AG (send \rightarrow F ack)$

then we cannot conclude that $M,s_0 \not\models AG (send \rightarrow F ack)$

• A counterexample might be spurious
• Refinement might be needed
Equivalences and preorders

Goal: to define

• **Preorder** between models: $M_2 \geq M_1$ s.t.
 $M_2 \models \varphi \implies M_1 \models \varphi$

• **Equivalence** between models: $M_1 \equiv M_2$ s.t.
 $M_1 \models \varphi \iff M_2 \models \varphi$

Which properties are preserved?
We define:

equivalence between models that **strongly** preserves CTL^*:

- If $M_1 \equiv M_2$ then for every CTL^* formula φ, $M_1 \models \varphi \iff M_2 \models \varphi$

preorder between models that **weakly** preserves ACTL^*:

- If $M_2 \succeq M_1$ then for every ACTL^* formula φ, $M_2 \models \varphi \implies M_1 \models \varphi$
ACTL / ACTL*

- **No existential path quantifier (no E)**
 - Only A
- **Negation is applied to atomic propositions only**
- Need \(\lor \) and \(\land \)
- \(U \) and the dual of \(U, V \) (release)

\[
M, \pi \models (f_1 \lor f_2) \iff \forall j \geq 0 \left[\left(\forall i < j. \pi^i \not\models f_1 \right) \Rightarrow \pi^j \models f_2 \right]
\]

- \(f_1 \lor f_2 \equiv \neg (\neg f_1 \lor \neg f_2) \)
ACTL

Universal CTL

• $p, \neg p$, for $p \in AP$

• $g_1 \lor g_2, g_1 \land g_2$

• $AX g_1, A (g_1 U g_2), A (g_1 V g_2)$
 - $AG g_1, AF g_1$ (can be expressed by AU, AV)

where g_1, g_2 are ACTL (state formulas)

Example : $AG AF$ restart is an ACTL formula
The simulation preorder [Milner]

Given two models over AP:

\[M_1 = (S_1,I_1,R_1,L_1), \quad M_2 = (S_2,I_2,R_2,L_2) \]

\[H \subseteq S_1 \times S_2 \] is a simulation iff

for every \((s_1, s_2) \in H:\)

- \(s_1\) and \(s_2\) satisfy the same propositions
- For every successor \(t_1\) of \(s_1\) there is a successor \(t_2\) of \(s_2\) such that \((t_1,t_2) \in H\)

Notation:

\(s_1 \preceq s_2\) if there is simulation \(H\), s.t. \((s_1,s_2) \in H\)
The simulation preorder [Milner]

Given two models over AP:
\[M_1 = (S_1, I_1, R_1, L_1), \quad M_2 = (S_2, I_2, R_2, L_2) \]

\[H \subseteq S_1 \times S_2 \] is a simulation iff
for every \((s_1, s_2) \in H:\)

\[\cdot \quad L_1(s_1) = L_2(s_2) \]

\[\cdot \quad \forall t_1 \left[(s_1, t_1) \in R_1 \implies \exists t_2 \left[(s_2, t_2) \in R_2 \land (t_1, t_2) \in H \right] \right] \]

Notation: \(s_1 \leq s_2 \)
Simulation preorder (cont.)

$H \subseteq S_1 \times S_2$ is a **simulation** from M_1 to M_2 iff H is a simulation and for every $s_1 \in I_1$ there is $s_2 \in I_2$ s.t. $(s_1, s_2) \in H$

Notation: $M_1 \leq M_2$
Bisimulation relation [Park]

For models M_1 and M_2 over AP,

$B \subseteq S_1 \times S_2$ is a **bisimulation**

iff for every $(s_1, s_2) \in B$:

- $L_1(s_1) = L_2(s_2)$
- $\forall t_1 \left[(s_1, t_1) \in R_1 \Rightarrow \exists t_2 \left[(s_2, t_2) \in R_2 \land (t_1, t_2) \in B \right] \right]$
- $\forall t_2 \left[(s_2, t_2) \in R_2 \Rightarrow \exists t_1 \left[(s_1, t_1) \in R_1 \land (t_1, t_2) \in B \right] \right]$

Notation: $s_1 \equiv s_2$
Bisimulation relation (cont.)

\[B \subseteq S_1 \times S_2 \text{ is a } \]
\[\text{Bisimulation between } M_1 \text{ and } M_2 \text{ iff } \]

- B is a bisimulation, and
- for every \(s_1 \in I_1 \) there is \(s_2 \in I_2 \)
 \[\text{s.t. } (s_1, s_2) \in B \text{ and } \]
- for every \(s_2 \in I_2 \) there is \(s_1 \in I_1 \)
 \[\text{s.t. } (s_1, s_2) \in B \]

Notation: \(M_1 \equiv M_2 \)
Bisimulation equivalence $\mathcal{M}_1 \equiv \mathcal{M}_2$

$B = \{ (1, 1'), (2, 4'), (4, 2'), (3, 5'), (3, 6'), (5, 3'), (6, 3') \}$
Simulation preorder

$M_1 \preceq M_2$
\[M_1 \leq M_2 \]
$M_1 \geq M_2$
$M_1 \leq M_2$ and $M_1 \geq M_2$ but not $M_1 \equiv M_2$
since they do not agree on all CTL.

Example: $M_2 \models \text{EX AX c}$ $M_1 \not\models \text{EX AX c}$
(bi)simulation and logic preservation

Theorem:
If \(M_1 \equiv M_2 \) then for every \(\text{CTL}^* \) formula \(\varphi \),
\(M_1 \models \varphi \iff M_2 \models \varphi \)

If \(M_2 \geq M_1 \) then for every \(\text{ACTL}^* \) formula \(\varphi \),
\(M_2 \models \varphi \Rightarrow M_1 \models \varphi \)
Lemma:
If $B(s, s')$ then

- for every path $\pi = s_0, s_1, \ldots$ from s there is a path $\pi' = s'_0, s'_1, \ldots$ from s' such that for every i: $B(s_i, s'_i)$
- for every path $\pi' = s'_0, s'_1, \ldots$ from s' there is a path $\pi = s_0, s_1, \ldots$ from s such that for every i: $B(s_i, s'_i)$

We say that π and π' correspond and write $B(\pi, \pi')$
Proof:
Assume $B(s, s')$ and let $\pi = s_0, s_1, \ldots$ be a path from s. We construct $\pi' = s'_0, s'_1, \ldots$ from s' by induction on the location i on π'.

Base:
We choose s'_0 to be s'. Therefore $B(s_0, s'_0)$.

Inductive step:
Assume $B(s_i, s'_i)$. $R(s_i, s_{i+1})$ since they are consecutive on π.
Therefore, there is t' such that $R(s'_i, t')$ and $B(s_{i+1}, t')$. We choose s'_{i+1} to be t'.

The proof that for every π' there is a corresponding π is similar
Proof (continued):

Note: induction can prove a property only for a finite (possibly unbounded) set. Not for infinite sets.

Here: π is infinite.

We proved that for every prefix of π there is a corresponding prefix of π'.
Proof (continued):

Assume there is no path starting from s' that corresponds to π.
Then for every path from s' there is an i such that $B(s_i, s'_i)$ does not hold.
But this contradicts the previous proof which shows that π' we constructed has $B(s_j, s'_j)$ for every j.
Theorem:
Let $B(s, s')$. Then for every CTL^* formula f, $s \models f \iff s' \models f$

Proof:
We show a simpler proof for CTL. By induction of the structure of the formula.
Base:
• $f \in \text{AP}$
Step:
• $f = \neg f_1$
• $f = f_1 \lor f_2$
• $f = \text{EX } f_1$
• $f = E (f_1 \cup f_2)$
• $f = EG f_1$
Abstractions

• They are one of the most useful ways to **fight** the state explosion problem

• They should **preserve properties of interest**: properties that hold for the abstract model should hold for the concrete model

• Abstractions should be **constructed directly from the program**
Abstraction

- Removes or simplifies details
- Removes entire components that are irrelevant to the property under consideration, thus reducing the model size (number of states and transitions)
• Manual abstraction requires great creativity

• **Goal:**
 Automatically construct an abstract model that will preserve the required property
Use

• In model checking, a small abstract model M_A will replace the full, concrete model M

• The abstract model M_A has
 - less states and transitions
 - More behaviors

• M_A is an over-approximation of M

• M_A preserves $\text{ACTL} / \text{ACTL}^*$ properties
 - If $M_A \models f$ then $M \models f$
Outline for abstraction

• **Define** an abstract model that preserves the checked property

• Consider different **types** of abstractions

• **Automatically construct** an abstract model
 - Different constructions for different types

• **Automatically refine** it, if the abstraction is not detailed enough
• We first define an abstract model M_h based on a concrete (full) model M of the system.

• Goal: constructing M_h directly from the program text.
Abstraction preserving ACTL/ACTL*

We use **Existential Abstraction** in which the abstract model is an **over-approximation** of the concrete model:

- The abstract model has **more behaviors**
- But no concrete behavior is lost

• Every ACTL/ACTL* property true in the abstract model is also true in the concrete model
Given an abstraction function \(h : S \rightarrow S_h \), the concrete states are grouped and mapped into abstract states:

\[M < M_h \]
How to define an abstract model:

Given M and φ, choose:

- S_h - a set of abstract states
- \mathcal{AP} - a set of atomic propositions that label concrete and abstract states
- $h : S \rightarrow S_h$ - a mapping from S on S_h that satisfies:
 \[h(s) = h(t) \text{ only if } L(s) = L(t) \]
- h is called appropriate w.r.t. \mathcal{AP}
The abstract model

\[M_h = (S_h, I_h, R_h, L_h) \]

- \(s_h \in I_h \iff \exists s \in I : h(s) = s_h \)
- \((s_h, t_h) \in R_h \iff \exists s, t \quad [h(s) = s_h \land h(t) = t_h \land (s, t) \in R] \)
- \(L_h(s_h) = L(s) \) for some \(s \) where \(h(s) = s_h \)

This is an exact abstraction
An approximated abstraction (an approximation)

- $s_h \in I_h \iff \exists s \in I : h(s) = s_h$

- $(s_h, t_h) \in R_h \iff \exists s, t \ [h(s) = s_h \land h(t) = t_h \land (s, t) \in R]$

- L_h is as before

Notation:
- M_r – reduced (exact)
- M_h – approximated
Depending on h and the size of \(M \), \(M_h \) (i.e. \(I_h, R_h \)) can be built using:

- BDDs or
- SAT solver or
- Theorem prover (SMT)

We later demonstrate such constructions for specific types of abstractions.