Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 3
Floyd Proof Rule for Partial Correctness

To prove \(\{q_1\}P\{q_2\} \):

1. Choose a set of cut points such that:
 i. start and halt are cut points
 ii. every cycle in the graph of \(P \) contains at least one cut point

2. For every cut point \(l \) find an inductive assertion \(I_l(\bar{x}) \), such that \(I_{l_0}(\bar{x}) = q_1(\bar{x}) \), \(I_{l^*}(\bar{x}) = q_2(\bar{x}) \)
Floyd Proof Rule for Partial Correctness (cont.)

3. For every basic path $\alpha = (l, l')$ prove:

$$\forall \bar{x} [I_l(\bar{x}) \land R_{\alpha}(\bar{x}) \rightarrow I_{l'}(T_{\alpha}(\bar{x}))]$$

If we successfully applied the proof rule for some invariants we will write

$$\vdash_F \{q_1\} P\{q_2\}$$
Floyd Proof Rule for Partial Correctness

Soundness of Floyd proof system (F):

If $\vdash_F \{ q_1 \} P \{ q_2 \}$
then $\models \{ q_1 \} P \{ q_2 \}$
Floyd Proof Rule for Partial Correctness

Lemma:
If $\vdash F \{q_1\} P \{q_2\}$ then for every computation π of P from l_0 with state σ such that $\sigma \models q_1(\bar{x})$ if the computation reaches cut point l' with state σ' then $\sigma' \models I_{l'}(\bar{x})$

Proof:
By induction on the number of cut points traversed in π
Floyd Proof Rule for Partial Correctness

Completeness of the proof system F:

If $\vdash \{ q_1 \} P \{ q_2 \}$
then $\vdash_F \{ q_1 \} P \{ q_2 \}$

We will not prove this.
Floyd Proof Rule for Partial Correctness (cont.)

If we change the requirement

3. For every basic path $\alpha = (l, l')$ prove:
 $\forall \bar{x}[I_l(\bar{x}) \land R_\alpha(\bar{x}) \rightarrow I_{l'}(T_\alpha(\bar{x}))]$

To
 $\forall \bar{x}[I_l(\bar{x}) \rightarrow I_{l'}(T_\alpha(\bar{x}))]$

Will the new rule be sound? Complete?
Floyd’s significance

Floyd suggested the use of

• R and T
 – Nowadays used for automated software verification, static analysis

• Invariants
 – Evolved into assertions

• There exist extensions to procedures, arrays, parallel programs
F* Proof Rule for Proving Termination (full correctness)

We would like to prove \(<p> S <q> \)

Example:
Flowchart: Example

\[P_{\text{div}}:: \]

\[l_0: \text{start} \]

\[l_1: (q,r) := (0,x_1) \]

\[l_2: r \geq x_2 \]

\[l_3: (q,r) := (q+1,r-x_2) \]

\[l_*: \text{halt} \]

\[l_*: \text{halt} \]

\[l_0: \text{start} \]

\[l_1: (q,r) := (0,x_1) \]

\[l_2: r \geq x_2 \]

\[l_3: (q,r) := (q+1,r-x_2) \]

\[l_*: \text{halt} \]
Well Founded Sets

A set W with a (possibly partial) order $<$ on $(W,<)$ is a well founded set if there is no infinitely decreasing sequences in W. That is, there is no sequence $w_i \in W$ such that:

$$w_0 > w_1 > w_2 > ...$$
Well Founded Sets - Examples

The partially ordered set \((2^A, \subseteq)\) for \(A=\{1,2\}\)
Well Founded Sets - Examples

• Naturals with the usual order \(\langle N, \langle \rangle \) is a well founded set
• Integers with the usual order \(\langle \) is not well founded
• Positive rational numbers with the usual order \(\langle \) is not well founded
• \((2^A, \subseteq) \) for any finite \(A \) is well founded
• \((2^A, \subseteq) \) for an infinite \(A \) is not well founded
• \(N \times N \) with the lexicographical order is a well founded set
F* Proof System for Proving Termination (full correctness)

To prove $<q_1> P <true>$:
1. Choose (W,\prec) to be (\mathbb{N},\prec) with the usual order
2. Choose a cut set as in F
3. For every cut point l find a parameterized inductive assertion $I_l(\bar{x},w)$
 where w is a variable over domain W
4. Prove (in First order logic):

- **(INIT)** \(\forall \bar{x} \left[q_1(\bar{x}) \rightarrow \exists w \left(I_{l_0}(\bar{x}, w) \right) \right] \)

- **(DEC)** For every basic path \(\alpha = (l, l') \) prove:

\[
\forall w \forall \bar{x} \left[I_l(\bar{x}, w) \land R_{\alpha}(\bar{x}) \rightarrow \exists w' \left(w' < w \land I_{l'}(T_{\alpha}(\bar{x}), w') \right) \right]
\]
If we successfully applied the proof rule for some invariants we will denote

\[\vdash_{F^*} < q_1 > P < \text{true} > \]
F* Proof System for Proving Termination (full correctness)

To prove $<q_1>P<q_2>$ we need to prove in addition in First order logic:

$$\forall w \forall \bar{x} \left[I_{l_*}(\bar{x}, w) \rightarrow q_2(\bar{x}) \right]$$
F* Proof System for Proving Termination (full correctness)

Soundness of the proof system F*:

If \(\vdash_{F^*} < q_1 > P < q_2 > \)

then \(\models < q_1 > P < q_2 > \)
Lemma:

If $\vdash_{F^*} <q_1> P<\text{true}>$ then for every computation π of P from l_0 with state σ such that $\sigma \models q_1(\bar{x})$ if the computation reaches cut point l' with state σ' then there is $v \in W$ such that $\sigma' \models I_{l'}(\bar{x}, v)$

In addition, if the computation passes through cut points l_0, l_1, \ldots with states $\sigma_0, \sigma_1, \ldots$ then there exists a sequence $v_0 > v_1 > \ldots$ such that for every i, $\sigma_i \models I_{l_i}(\bar{x}, v_i)$
F* Proof System for Proving Termination (full correctness)

Completeness of the proof system F*:

If $\equiv < q_1 > P < q_2 >$
then $\vdash_{F*} < q_1 > P < q_2 >$
F* Proof System for Proving Termination (full correctness)

Completeness proof sketch for the termination rule for:

\[
\text{If } \vdash < q_1 > P \langle \text{true} \rangle \\
\text{then } \vdash_{F^*} < q_1 > P \langle \text{true} \rangle
\]

Full completeness proof in [Francez, program verification]
Model Checking

Automated formal verification:

A different approach to formal verification
Formal Verification

Given

• a model of a (hardware or software) system and
• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a decidable one:

• **Finite-state** reactive systems
• **Propositional** temporal logics
Properties in Propositional Temporal Logic - Examples

- **mutual exclusion:**
 \[\text{always } \neg (cs_1 \land cs_2)\]

- **non starvation:**
 \[\text{always } (\text{request} \Rightarrow \text{eventually granted})\]

- **communication protocols:**
 \[\neg \text{get-message} \text{ until } \text{send-message}\]
Finite State Systems - Examples

- Hardware designs
- Controllers (elevator, traffic-light)
- Communication protocols (when ignoring the message content)
- High level (abstracted) description of non finite state systems