Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2018-19
Lecture 6
Explicit Model Checking for CTL
Model Checking $M \models f$ (cont.)

- We check subformula g of f only after all subformulas of g have already been checked.

- For subformula g, the algorithm adds g to label(s) for every state s that satisfies g.

- When we finish checking g, the following holds:
 - $g \in \text{label}(s) \iff M,s \models g$
Model Checking $M \models f$ (cont.)

Alternative description
Denote $S_g = \{ s \mid M, s \models g \}$

- The goal of model checking is to compute S_g for each subformula g of f
 - In particular, S_f
Model Checking Atomic Propositions

- For atomic proposition $p \in AP$:

 $p \in \text{label}(s) \iff p \in L(s)$

 - Held by alg
 - Defined by M

How do we handle more complex formulas?

Observation:

- Sufficient to handle \neg, \lor, EX, EU, EG
Model Checking \(g = E(f_1 \cup f_2) \)

procedure \(\text{CheckEU}(f_1, f_2) \)

\[
T := \{ s \mid f_2 \in \text{label}(s) \}
\]

For all \(s \in T \) do \(\text{label}(s) := \text{label}(s) \cup \{ E(f_1 \cup f_2) \} \)

while \(T \neq \emptyset \) do

choose \(s \in T \); \(T := T \setminus \{s\} \);

for all \(t \) s.t. \(R(t,s) \) do

if \(E(f_1 \cup f_2) \notin \text{label}(t) \) and \(f_1 \in \text{label}(t) \) then

\[
\text{label}(t) := \text{label}(t) \cup \{ E(f_1 \cup f_2) \};
\]

\(T := T \cup \{t\} \)

end for all

end while

Do not add a state to \(T \) more than once
Example $g = E(f_1 \cup f_2)$
• How shall we handle $g = EF f_1$?

Remarks:
We transform a logical question of $M, s \models f$ to a graph traversal algorithm

The algorithm is guaranteed to terminate
Model Checking \(g = EG \ f_1 \)

\[s \models EG \ f_1 \]

iff

There is a path \(\pi \), starting at \(s \), such that \(\pi \models G \ f_1 \)

iff

There is a path from \(s \) to a strongly connected component, where all states satisfy \(f_1 \)
Model Checking \(g = \text{EG} f_1 \)

- A Strongly Connected Component (SCC) in a graph is a subgraph \(C \) s.t. every node in \(C \) is reachable from any other node in \(C \) via nodes in \(C \).

- An SCC \(C \) is maximal (MSCC) if it is not contained in any other SCC in the graph.
- \(C \) is nontrivial if it contains at least one edge. Otherwise, it is trivial.

Tarjan has a linear algorithm in \(O(|S|+|R|) \) for finding all MSCCs in a graph, including the trivial SCCs.
Model Checking $g = EG f_1$

Why using maximal SCCs?

Complexity concerns:

There are up to $2^{|S|}$ non-maximal SCCs in M

Number of maximal SCCs is at most $|S|$

- Disjoint
- Overall number of states is $|S|$
Model Checking $g = EG f_1$

Reduced structure for M and f_1:
Remove from M all states s.t. $f_1 \notin \text{label}(s)$

Resulting model: $M' = (S', R', L')$
- $S' = \{ s \mid M, s \models f_1 \}$
- $R' = (S' \times S') \cap R$
- $L'(s') = L(s')$ for every $s' \in S'$

Theorem: $M, s \models EG f_1$ iff
1. $s \in S'$ and
2. There is a path in M' from s to some state in a nontrivial maximal strongly connected component of M'

R' might no longer be total
Model Checking $g = \text{EG} \; f_1$

Procedure CheckEG (f_1)

- **S'**: \{s $|$ $f_1 \in \text{label}(s)$ \}

- **MSCC**: \{ C $|$ C is a nontrivial MSCC of M' \}

- **T**: $\bigcup_{C \in \text{MSCC}} \{ s \; | \; s \in C \}$

- **For all** $s \in T$ **do** $\text{label}(s) := \text{label}(s) \cup \{ \text{EG} \; f_1 \}$

- **While** $T \neq \emptyset$ **do**
 - **Choose** $s \in T$; $T := T \setminus \{s\}$
 - **For all** $t \in S'$ $\text{s.t.} \; R(t,s)$ **do**
 - **If** $\text{EG} \; f_1 \notin \text{label}(t)$ **then**
 - $\text{label}(t) := \text{label}(t) \cup \{ \text{EG} \; f_1 \}$
 - $T := T \cup \{t\}$
 - **End for all**
- **End While**
Complexity for EG f_1

- Computing M': $O(|S| + |R|)$
- Computing MSCCs using Tarjan's algorithm: $O(|S'| + |R'|)$
- Labeling all states in MSCCs: $O(|S'|)$
- Backward traversal: $O(|S'| + |R'|)$

Overall: $O(|S| + |R|) = O(M)$
Theorem: $M, s \vDash EG f_1$ iff

1. $s \in S'$ and
2. There is a path in M' from s to some state in a nontrivial maximal strongly connected component of M'

Proof:
Model Checking Complexity

- Each subformula requires $O(|M|)$
- Number of subformulas: $O(|f|)$
- Total: $O(|M| \times |f|)$
Microwave Example
Property

- $AG (Start \rightarrow AF \text{ Heat})$
- $\neg EF (Start \land EG \neg \text{Heat})$
- $\neg E (\text{true} \lor (Start \land EG \neg \text{Heat}))$

Instead of writing the formulas in label(s) for each s, use $S(f)$ to denote the set of states s.t. $f \in \text{label(s)}$
\(\neg E (\text{true U (Start } \land \neg \text{EG } \neg \text{Heat})) \)

- \(S(\text{Start}) : \{2,5,6,7\} \)
- \(S(\neg \text{Heat}) : \{1,2,3,5,6\} \)
- \(S(\text{EG } \neg \text{Heat}) : \{1,2,3,5\} \)
\neg E \ (\text{true} \ U \ (\text{Start} \land \ EG \ \neg \text{Heat}))

S(\text{Start}) : \{2,5,6,7\}
S(\neg \text{Heat}) : \{1,2,3,5,6\}
S(EG \ \neg \text{Heat}) : \{1,2,3,5\}

S(\text{Start} \land EG \ \neg \text{Heat}) : \{2,5\}
S(\text{EU}) : \{1,2,3,4,5,6,7\}
S(f) : \emptyset