Lecture 1
Why (formal) Verification?

- Safety-critical applications:
 - Air-traffic controllers
 - Medical equipment
 - Cars

 Bugs are unacceptable!

- Bugs found in later stages of design are expensive, e.g. Intel’s Pentium bug in floating-point division

- Testing does not provide full coverage
What are we doing about it?

Testing - build it, try it on a some cases, hope it works all cases
What should we be doing?

Formal analysis and verification

\[
\begin{align*}
\mathbf{r}_{\text{com}} &= \frac{\sum m_i \mathbf{r}_i}{\sum m_i} = (\bar{x}, \bar{y}, \bar{z}) \\
\bar{x} &= \frac{\sum m_i x_i}{\sum m_i} \\
\bar{y} &= \frac{\sum m_i y_i}{\sum m_i} \\
\bar{z} &= \frac{\sum m_i z_i}{\sum m_i} \\
\mathbf{r}_{\text{com}} &= \frac{1}{m} \int r dm = \frac{1}{V} \int r dV \\
\mathbf{r}_{\text{mg}} &= \frac{\sum w_i \mathbf{r}_i}{\sum w_i} = (\bar{x}, \bar{y}, \bar{z}) \\
\bar{x} &= \frac{\sum w_i x_i}{\sum w_i} \\
\bar{y} &= \frac{\sum w_i y_i}{\sum w_i} \\
\bar{z} &= \frac{\sum w_i z_i}{\sum w_i} \\
\mathbf{r}_{\text{mg}} &= \frac{1}{W} \int r dw = \frac{1}{V} \int r dV \\
\sum \mathbf{F} = 0 &\iff \begin{cases} \\
\sum F_x = \sum F_x \\
\sum F_y = \sum F_y \\
\sum F_z = \sum F_z \\
\end{cases} \\
\sum \tau = 0 &\iff \begin{cases} \\
\sum \tau_x = \sum \tau_x \\
\sum \tau_y = \sum \tau_y \\
\sum \tau_z = \sum \tau_z \\
\end{cases}
\end{align*}
\]
The goal of the course: Formal Verification

Given

- A (model of) hardware or software system and
- a formal specification

does the system satisfy the specification?

Not decidable!
Formal Verification

Solutions:

• “Program correctness”: Provide non-automated verification methods

• “Automatic verification / Model Checking”: restrict the problem to a decidable one:
 - Finite-state reactive systems
 - Propositional temporal logics
Specifications

• Should be given for a system by the designer, developer, programmer, user

• Examples:
 - Does the program always terminate?
 - Does the program compute correctly multiplication of its inputs?
Specifications

• Additional examples:
 - When we press a sequence of buttons on the control panel of an airplane / microwave - do we get the desired result?
 - When we deposit money - does it get to our account?
 - Can a user access data only if he has the appropriate authorization?
Verification tools

Are developed and used in

• **Hardware industry:** Intel, IBM, Cadence, Mellanox, ...

• **Software industry:** Microsoft, NASA, Amazon, Facebook...

• **Universities**
Part 1 of the course

Program Correctness

- Non-automated
- Verifies program with possibly infinite number of states
- Refers to the programs as input-output transformation
Ingredients for Formal Verification

1. Specification language
 • With formal semantics

2. Programming language
 • with formal semantics

3. Proof rules
 • For proving “Program P has the property \(\varphi \)”
Requirements from the proof rules

• **Soundness of the rules:** if we were able to prove correctness of program P w.r.t. specification φ using the proof rules, then P is correct w.r.t. φ

• **Completeness of the rules:** if P is correct w.r.t. specification φ, then our proof rules can prove it
We handle:

- **Deterministic programs**
 - Exactly one computation for every input
 - At most one output for each input

- **Properties**
 - Partial correctness
 - Termination
 - Total Correctness
Some notations

• Program variables: \(\bar{x} = (x_1, \ldots, x_n) \)

• A state of the program \(\sigma \) is a function from program variables to their domains

• The set of program states is defined by:
 \[D_1 \times \ldots \times D_n \cup \{ \perp \} \]
 Where \(D_i \) is the domain of variable \(x_i \)
Program states: Examples

• A program with integer variable x, Boolean variable b
 – States: $(5, F), (-17, T)$

• Elevator on 3 floors:
 $\text{elev_at } \in \{1, 2, 3\}$
 $\text{on_floor1, on_floor2, on_floor3}$: Boolean
 $\text{in_elev1, in_elev2, in_elev3}$: Boolean
 $\text{direction } \in \{\text{up, down}\}$, $\text{door } \in \{\text{open, close}\}$
 – State: $(2, F, T, T, T, T, F, \text{up}, \text{close})$
Defining the Specification

Specification is a pair \(<q_1(\overline{x}), q_2(\overline{x})>\) where:

- \(q_1(\overline{x})\), \(q_2(\overline{x})\) are first order formulas over program variables

- \(q_1(\overline{x})\) describes a condition holding before the execution of the program

- \(q_2(\overline{x})\) describes a condition holding at the end of the execution of the program
Examples

Specification example

• \(< (x \geq 0 \land y > 0) \land (z = x/y \land z \geq 0) > \)

A program with \(x \in \mathbb{N}, y \in \mathbb{R}, b \in \{T,F\} \)

States: \((5, 5.0, T), (7, 3.111, F)\)

\(q_1(x, y, b) = x > 0 \land b \)

\(q_2(x, y, b) = x+y > 0 \land \neg b \)
Computations of Programs

- $\pi(P, \sigma)$ denotes a computation of program P from state σ
- $\pi(P, \sigma)$ is a finite $(\sigma_1, ..., \sigma_k)$ or infinite $(\sigma_1, \sigma_2, ...) \text{ sequence of states where:}$
 - $\sigma_1 = \sigma$
 - σ_{i+1} is a result of applying an action from the program on σ_i
- This definition is not a full definition
More notations

• \bot - bottom: the undefined value

• $\text{val}(\pi)$ denotes the final state of computation π (if exists)

 - $\text{val}(\pi) = \sigma_k$ if $\pi = (\sigma_1, \ldots, \sigma_k)$

 - $\text{val}(\pi) = \bot$ if $\pi = (\sigma_1, \sigma_2, \ldots)$

 • π is an infinite computation

• $\sigma \models q(\overline{x})$ if $q(\overline{x})$ is true when free variables in q are replaced with matching values in σ
• Important remark:
 \(\bot \neq q(\bar{x}) \) for every \(q(\bar{x}) \) (even \(\bot \neq \text{true} \))

• Example of formulas and their meaning:
 \(q(y) = \forall x (y | x \lor 2 | x) \) where \(x, y \) are naturals
 – For a state \(\sigma (x) = 1, \sigma (y) = 2, \sigma (z) = 1 \)
 \(\sigma \models q(y) \) since \(\forall x (2 | x \lor 2 | x) \) is true
Partial Correctness

• A program P is partially correct with respect to specification $<q_1(x), q_2(x)> \iff$ for every computation π of P from an initial point of P, and for every state σ_0:

 if

 – the computation starts from state σ_0 which satisfies $q_1(x)$ and
 – the computation terminates

 then

 – $q_2(x)$ holds at the end of the computation
Partial Correctness

• For every computation π and every state σ_0:

$$(\sigma_0 \models q_1(x) \text{ and } \text{val}(\pi(P, \sigma_0)) \neq \bot) \Rightarrow \text{val}(\pi(P, \sigma_0)) \models q_2(x)$$

• Notation: $\{q_1\}P\{q_2\}$
Total Correctness

- A program P is **totally correct** with respect to specification $<q_1(\bar{x}), q_2(\bar{x})>$ iff for every computation π of P from an initial point of P, and for every state σ_0:

 - the computation starts from state σ_0 which satisfies $q_1(\bar{x})$
 - the computation terminates, and
 - $q_2(\bar{x})$ holds at the end of the computation
Total Correctness

• For every computation π and every state σ_0:

\[\sigma_0 \models q_1(\bar{x}) \Rightarrow \text{val}(\pi(P, \sigma_0)) \neq \bot \text{ and } \text{val}(\pi(P, \sigma_0)) \models q_2(\bar{x}) \]

• Notation: $<q_1>P<q_2>$
How do we write the specification:

“P terminates if the initial state satisfies q_1”
Separation Lemma

- For every program P and specification $<q_1,q_2>$:

$$\models <q_1>P<q_2>$$

if and only if

$$\models \{q_1\}P\{q_2\} \text{ and } \models <q_1>P<true>$$
Examples

• Which programs satisfy \{true\}P\{false\}?

• Which programs satisfy \langle true \rangle P \langle false \rangle ?
Logical Variables in Specifications

Example 1:
Specify a program with a single variable x whose value at the end of the computation is twice its value at the beginning
Logical Variables in Specifications

Solution: add fresh variables which are
– not part of the program and therefore
– their value does not change during the execution of the program

These variables are called logical variables

Convention: We use logical variable X to preserve the value of variable x
Logical Variables in Specifications

Example 2:
Program which returns in variable z the multiplication of variables x and y

Convention:
Assertions q_1, q_2 are now defined over \bar{x} that includes program variables as well as logical variables
End of lecture 1