Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2018-19
Lecture 11

• CBMC
• Efficient SAT solvers
Bounded model checking

• Can handle all of LTL formulas
• Can be used for verification by choosing k which is large enough
 - Need bound on length of the shortest counterexample.
 • diameter bound. The diameter is the maximum length of the shortest path between any two states.
• Using such k is often not practical due to the size of the model
 • Computing worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.
CBMC: C Bounded Model Checker
Bounded Model Checking of C programs

Developed by Daniel Kroening

Based on slides by Arie Gurfinkel
A (very) simple example (1)

Program

```
int x;
int y=8,z=0,w=0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 7 || w == 9)
```

Constraints

```
y = 8,
z = x ? y - 1 : 0,
w = x ? 0 : y + 1,
z != 7,
w != 9
```

UNSAT

no counterexample

assertion always holds!
A (very) simple example (2)

Program

```c
int x;
int y=8,z=0,w=0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 5 ||
    w == 9)
```

Constraints

```c
y = 8,
z = x ? y - 1 : 0,
w = x ? 0 : y + 1,
z != 5,
w != 9
```

SAT
counterexample found!

```c
y = 8, x = 1, w = 0, z = 7
```
How does CBMC work

Transform a program into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample
Example: Sufficient Loop Unwinding

```c
void f(...) {
    j = 1
    while (j <= 2)
        j = j + 1;
    Remainder;
}

unwind = 3

assert(!(j <= 2))
unwinding assertion
```

```c
void f(...) {
    j = 1
    if(j <= 2) {
        j = j + 1;
        if(j <= 2) {
            j = j + 1;
            assert(!(j <= 2));
        }
    }
    Remainder;
}
```
Example: Insufficient Loop Unwinding

void f(...) {
 j = 1
 while (j <= 10)
 j = j + 1;
 Remainder;
}

unwind = 3

void f(...) {
 j = 1
 if(j <= 10) {
 j = j + 1;
 if(j <= 10) {
 j = j + 1;
 assert(!(j <= 10));
 }
 }
 Remainder;
}
Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times, use a new variable for the LHS of each assignment

Program
\[
\begin{align*}
 x &= x + y; \\
 x &= x \times 2; \\
 a[i] &= 100;
\end{align*}
\]

SSA Program
\[
\begin{align*}
 x_1 &= x_0 + y_0; \\
 x_2 &= x_1 \times 2; \\
 a_1[i_0] &= 100;
\end{align*}
\]

Single Static Assignment (SSA)
What about conditionals?

For each join point, add new variables with selectors

Program

```
if (v)
    x = y;
else
    x = z;

w = x;
```

SSA Program

```
if (v0)
    x1 = y0;
else
    x2 = z0;

x3 = v0 ? x1 : x2;

w1 = x3;
```
Example

int main() {
 int x, y;
 y=8;
 if(x)
 y--;
 else
 y++;
 assert
 (y==7 ||
 y==9);
}

int main() {
 int x, y;
 y1=8;
 if(x0)
 y2=y1-1;
 else
 y3=y1+1;
 y4= x0?y2:y3;
 assert
 (y4==7 ||
 y4==9);
}

\(y_1 = 8 \)
\(\land \ y_2 = y_1 - 1 \)
\(\land \ y_3 = y_1 + 1 \)
\(\land \ y_4 = x_0 \ ? \ y_2 : y_3 \)
\(\Rightarrow (y_4=7 \ \lor \ y_4=9) \)

valid?
Example

```c
int main() {
    int x, y;
    y = 8;
    if (x)
        y--;  
    else  
      y++; 
    assert  
          (y == 7 || y == 9);
}
```

```c
int main() {
    int x, y;
    y1 = 8;
    if (x0)
        y2 = y1 - 1;
    else
      y3 = y1 + 1;
    y4 = x0 ? y2 : y3;
    assert  
          (y4 == 7 || y4 == 9);
}
```

```
( y1 = 8  
 ∧  y2 = y1 - 1 
 ∧  y3 = y1 + 1 
 ∧  y4 = x0 ? y2 : y3 )  
 ∧  ¬(y4=7 ∨ y4=9)  
```

Unsat?
From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
- assert(e) - aborts an execution when e is false, no-op otherwise

Non-determinism
- nondet_int() - returns a non-deterministic integer value

Assumptions
- assume(e) - “ignores” execution when e is false, no-op otherwise
Assume-Guarantee Reasoning (1)

Is sort correct?

Check by splitting on the arguments of sort

```c
void sort (int* p, int n) { ... }
void main(void) {
    ...
    sort(a1, 10);
    ...
    sort(a2, 7);
    ...
}
```
Assume-Guarantee Reasoning (2)

(Assume) Is sort correct assuming p is not NULL?

```c
void sort (int* p, int n) {
    assume(p!=NULL);
    ... /* sort code */
    assert(sorted(p,n));
}
```
(Guarantee) Is `sort` guaranteed to be called with a non-NULL argument?

```c
void main(void) {
    ...
    assert (a1!=NULL);  // sort(a1,10)
    for (c = 0; c < 10; c++)
        a1[c] = nondet_int();
    assume(sorted(a1,10));
    ...
    assert (a2!=NULL);  // sort(a2,7)
    for (c = 0; c < 7; c++)
        a2[c] = nondet_int();
    assume(sorted(a2,7));
    ...
}
Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

This program is passed by CBMC!

Assume must either be checked with assert or used as an environmental restriction:
How does CBMC work

Transform a program into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample
Efficient SAT solvers
The SAT Problem

• Given a propositional formula $\varphi(\overline{v})$, is there a satisfying assignment $A$ for $\overline{v}$

• An assignment is a function from $\overline{v}$ to \{true, false\}

• $A$ is a satisfying assignment if $\varphi(A(\overline{v}))=true$

• $A$ is called a solution for $\varphi(\overline{v})$

• A partial assignment assigns a subset of $\overline{v}$
**CNF representation of \( \varphi(\overline{v}) \)**

- \( \varphi(\overline{v}) \) is a conjunction of clauses: \( \varphi(\overline{v}) = cl_1 \land cl_2 \land ... \land cl_n \)
- A **clause** is a disjunction of literals: \( cl_i = (lit_1 \lor ... \lor lit_i) \)
- A **literal** is an atomic proposition or its negation

- **Example:**
  \( (a \lor c) \land (b \lor c) \land (\neg a \lor \neg b \lor d) \)

- A satisfies \( \varphi(\overline{v}) \) iff A satisfies all its clauses
• Example:
  \[(a \lor c) \land (b \lor c) \land (\neg a \lor \neg b \lor d)\]

• Satisfying assignments:
  - \(A_1 = (a=\text{true}, b=\text{true}, d=\text{true}, c=\text{false})\)
  - \(A_2 = (c=\text{true}, a=\text{false}, b=\text{true}, d=\text{false})\)

• CNF formulas
  - Clause does not contain \(a\), \(\neg a\)
  - No repetition of literals in clause

• CNF formulas can be represented as a set of sets of literals
Searching for a satisfying assignment

• Inefficient way:
  check each one of the $2^n$ assignments
  where $|\overline{v}| = n$

• The basis for efficient SAT solving:
  Davis, Putnam, Logeman, Loveland (DPLL)
  1960, 1962
First idea: Unit Clause

Given

• a propositional formula \( \varphi(\overline{v}) \), and
• a partial assignment \( A \)

A Unit Clause is a clause with

- exactly one unassigned literal, while
- all other literals are false

• Asserts the value of the unassigned variable

\[
\begin{align*}
    a &= \,? \\
    b &= 1 \\
    d &= 0 \\
    cl &= (a \lor \neg b \lor d) \\
\end{align*}
\]

\[\implies a = 1\]

• \( a=1 \) is implied by \( b=1 \) and \( d=0 \)
Boolean Constraint Propagation (BCP)

• **BCP:** For $\varphi(\overline{v})$ and a partial assignment $A$, computes all possible implications
  - Based on unit clauses

• **Conflict:** a variable gets both 0 and 1 under $A$
DPLL algorithm

1. Start with an empty partial assignment $A$
2. If $A$ is complete (no new decision to make), return $(SAT, A)$
3. Otherwise, extend $A$ with a decision:
   $D=(\text{variable}, \text{value})$
4. BCP: extend $A$ with all implications of $D$
5. If (no conflict) go to 2
6. If (conflict), apply backtracking:
   Let $D=(v,b)$ be the last decision s.t. $(v, \neg b)$ has not been checked yet
   - Flip decision $D$: Remove $(v,b)$, extend $A$ with $(v, \neg b)$
   - Undo all implications from $D=(v,b)$
     and from flips made after $D$
   - Return to 4
7. If no decision to flip, return UNSAT
DPLL algorithm

- **Termination**
  - No unassigned variable - **SAT**
  - No decision variable to flip - **UNSAT**
\[(\neg b \lor c) \land (\neg a \lor \neg d) \land (a \lor b \lor \neg c) \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e)\]

**Decision 1:** $b = 1$
- **BCP:** $c = 1$

\[\quad \land (\neg a \lor \neg d) \land [\quad] \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e)\]

**Decision 2:** $a = 1$
- **BCP:** $d = 0$
- **d = 1**

**Conflict! - Backtrack**
\[(\neg b \lor c) \land (\neg a \lor \neg d) \land (a \lor b \lor \neg c) \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e)\]

Decision 1: \( b = 1 \)
BCP: \( c = 1 \)

\[\square \land (\neg a \lor \neg d) \land \square \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e)\]

Decision 2: \( a = 0 \)
\[ (\neg b \lor c) \land (\neg a \lor \neg d) \land (a \lor \neg b \lor \neg c) \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e) \]

**Decision 1:** \( b = 1 \)

**BCP:** \( c = 1 \)

\[
[ \quad ] \land [ \quad ] \land [ \quad ] \land [ \quad ] \land (a \lor \neg c \lor \neg e)
\]

**Decision 2:** \( a = 0 \)

**BCP:** \( e = 0 \)

**Partial satisfying assignment:**

\( b = 1, c = 1, a = 0, e = 0 \)
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

- Abstraction
- Compositional verification
- Partial order reduction
- Symmetry