Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 12

9.1.18
Summary

• Explicit model checking

State explosion problem

• BDD-based symbolic model checking
• SAT-based Bounded Model Checking (BMC)
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

- Abstraction
- Compositional verification
- Partial order reduction
- Symmetry
example

Let M be a communication system in which there are exactly 20 wait steps between a send and an ack.

$M::$

```
[send] → [wait] → [wait] → [wait] → [wait] → [wait] → [ack]
```

s_0 s_1 s_2 s_{19} s_{20} s_{21}

M' includes all behaviors of M and more:

$M'::$

```
[send] → [wait] → [ack]
```

s'_0
example

Every path in M has a "representative path" in M'. Therefore, if we prove:

\[M', s_0' \models A(\neg \text{ack } W \text{ send}) \]

We can conclude that also:

\[M, s_0 \models A(\neg \text{ack } W \text{ send}) \]
Since M' has more paths, if
$M',s'_0 \not\models AG (send \rightarrow F\ ack)$
then we cannot conclude that
$M,s_0 \not\models AG (send \rightarrow F\ ack)$

• A counterexample might be spurious
• Refinement might be needed
Equivalences and preorders

Goal: to define

- **Preorder** between models: $M_2 \geq M_1$ s.t.
 \[M_2 \models \varphi \implies M_1 \models \varphi \]

- **Equivalence** between models: $M_1 \equiv M_2$ s.t.
 \[M_1 \models \varphi \iff M_2 \models \varphi \]

Which properties are preserved?
We define:

equivalence between models that **strongly preserves** CTL*:

- If $M_1 \equiv M_2$ then for every CTL* formula φ,

 $M_1 |\varphi \iff M_2 |\varphi$

preorder between models that **weakly preserves** ACTL*:

- If $M_2 \geq M_1$ then for every ACTL* formula φ,

 $M_2 |\varphi \Rightarrow M_1 |\varphi$
ACTL / ACTL

- **No existential path quantifier (no E)**
 - Only A
- **Negation is applied to atomic propositions only**
- **Need \(\lor \) and \(\land \)**
- **U and the dual of U, V (release)**

\[
M, \pi \models (f_1 \lor f_2) \iff \forall j \geq 0 [[\forall i < j. \pi^i \not\models f_1] \Rightarrow \pi^j \models f_2]
\]

- \(f_1 \lor f_2 \equiv \neg (\neg f_1 \lor \neg f_2) \)
ACTL

Universal CTL

• $p, \neg p$, for $p \in AP$

• $g_1 \lor g_2, g_1 \land g_2$

• $AX g_1, A (g_1 U g_2), A(g_1 V g_2)$

 – $AG g_1, AF g_1$ (can be expressed by AU, AV)

where g_1, g_2 are ACTL (state formulas)

Example: $AG AF$ restart is an ACTL formula
The simulation preorder [Milner]

Given two models over AP:
\[M_1 = (S_1, I_1, R_1, L_1), \quad M_2 = (S_2, I_2, R_2, L_2) \]

\(H \subseteq S_1 \times S_2 \) is a simulation iff
for every \((s_1, s_2) \in H\):
- \(s_1 \) and \(s_2 \) satisfy the same propositions
- For every successor \(t_1 \) of \(s_1 \) there is a successor \(t_2 \) of \(s_2 \) such that \((t_1, t_2) \in H\)

Notation:
\(s_1 \leq s_2 \) if there is simulation \(H \), s.t. \((s_1, s_2) \in H\)
The simulation preorder [Milner]

Given two models over AP:

\[M_1 = (S_1, I_1, R_1, L_1), \quad M_2 = (S_2, I_2, R_2, L_2) \]

\(H \subseteq S_1 \times S_2 \) is a simulation iff

for every \((s_1, s_2) \in H\):

- \(L_1(s_1) = L_2(s_2) \)

- \(\forall t_1 \ [(s_1, t_1) \in R_1 \Rightarrow \exists t_2 \ [(s_2, t_2) \in R_2 \land (t_1, t_2) \in H]] \)

Notation: \(s_1 \preceq s_2 \)
Simulation preorder (cont.)

\(H \subseteq S_1 \times S_2 \) is a simulation from \(M_1 \) to \(M_2 \) iff

\(H \) is a simulation and

for every \(s_1 \in I_1 \) there is \(s_2 \in I_2 \)

s.t. \((s_1, s_2) \in H \)

Notation: \(M_1 \leq M_2 \)
Bisimulation relation [Park]

For models M_1 and M_2 over AP,
$B \subseteq S_1 \times S_2$ is a bisimulation
iff for every $(s_1, s_2) \in B$:

- $L_1(s_1) = L_2(s_2)$
- $\forall t_1 [(s_1, t_1) \in R_1 \Rightarrow \exists t_2 [(s_2, t_2) \in R_2 \land (t_1, t_2) \in B]]$
- $\forall t_2 [(s_2, t_2) \in R_2 \Rightarrow \exists t_1 [(s_1, t_1) \in R_1 \land (t_1, t_2) \in B]]$

Notation: $s_1 \equiv s_2$
Bisimulation relation (cont.)

B ⊆ S₁ x S₂ is a
Bisimulation between M₁ and M₂ iff

• B is a bisimulation, and
• for every s₁ ∈ I₁ there is s₂ ∈ I₂
 s.t. (s₁, s₂) ∈ B and
• for every s₂ ∈ I₂ there is s₁ ∈ I₁
 s.t. (s₁, s₂) ∈ B

Notation: M₁ ≡ M₂
Bisimulation equivalence $M_1 \equiv M_2$

$B = \{ (1, 1'), (2, 4'), (4, 2'), (3, 5'), (3, 6'), (5, 3'), (6, 3') \}$
Simulation preorder

\(M_1 \preceq M_2 \)
\[M_1 \leq M_2 \]
$\mathcal{M}_1 \geq \mathcal{M}_2$
\[M_1 \leq M_2 \text{ and } M_1 \geq M_2 \text{ but not } M_1 \equiv M_2 \]

since they do not agree on all CTL.

Example: \(M_2 \models \text{EX AX } c \) \(M_1 \not\models \text{EX AX } c \)
(bi)simulation and logic preservation

Theorem:
If $M_1 \equiv M_2$ then for every CTL^* formula ϕ, $M_1 \models \phi \iff M_2 \models \phi$

If $M_2 \geq M_1$ then for every $ACTL^*$ formula ϕ, $M_2 \models \phi \Rightarrow M_1 \models \phi$
Lemma:
If $B(s, s')$ then

- for every path $\pi = s_0, s_1, \ldots$ from s there is a path $\pi' = s'_0, s'_1, \ldots$ from s' such that for every i: $B(s_i, s'_i)$

- for every path $\pi' = s'_0, s'_1, \ldots$ from s' there is a path $\pi = s_0, s_1, \ldots$ from s such that for every i: $B(s_i, s'_i)$

We say that π and π' correspond and write $B(\pi, \pi')$
Proof:
Assume $B(s,s')$ and let $\pi = s_0, s_1, \ldots$ be a path from s.
We construct $\pi' = s'_0, s'_1, \ldots$ from s' by induction on the location i on π'.

Base:
We choose s'_0 to be s'. Therefore $B(s_0,s'_0)$.

Inductive step:
Assume $B(s_i,s'_i)$. $R(s_i, s_{i+1})$ since they are consecutive on π.
Therefore, there is t' such that $R(s'_i, t')$ and $B(s_{i+1},t')$.
We choose s'_{i+1} to be t'.
The proof that for every π' there is a corresponding π is similar.
Proof (continued):

Note: induction can prove a property only for a finite (possibly unbounded) set. Not for infinite sets.

Here: π is infinite.

We proved that for every prefix of π there is a corresponding prefix of π'
Proof (continued):

Assume there is no path starting from s' that corresponds to π. Then for every path from s' there is an i such that $B(s_i, s'_i)$ does not hold. But this contradicts the previous proof which shows that π' we constructed has $B(s_j, s'_j)$ for every j.
Theorem:
Let $B(s, s')$. Then for every CTL^* formula f, $s \models f \iff s' \models f$

Proof:
We show a simpler proof for CTL. By induction of the structure of the formula.

Base:
• $f \in \text{AP}$

Step:
• $f = \neg f_1$
• $f = f_1 \lor f_2$
• $f = \text{EX } f_1$
• $f = E (f_1 \cup f_2)$
• $f = EG f_1$
Abstractions

• They are one of the most useful ways to **fight** the state explosion problem

• They should **preserve properties of interest**: properties that hold for the abstract model should hold for the concrete model

• Abstractions should be **constructed directly from the program**
Abstraction

- Removes or simplifies details
- Removes entire components

that are irrelevant to the property under consideration, thus reducing the model size (number of states and transitions)
• Manual abstraction requires great creativity

• Goal:
 Automatically construct an abstract model that will preserve the required property
Use

• In model checking, a small abstract model M_A will replace the full, concrete model M

• The abstract model M_A has
 - less states and transitions
 - More behaviors

• M_A is an over-approximation of M

• M_A preserves ACTL / ACTL* properties
 - If $M_A \models f$ then $M \models f$
Outline for abstraction

• **Define** an abstract model that preserves the checked property

• **Consider different types** of abstractions

• **Automatically construct** an abstract model
 - Different constructions for different types

• **Automatically refine** it, if the abstraction is not detailed enough
We first define an abstract model M_h based on a concrete (full) model M of the system.

Goal: constructing M_h directly from the program text.
Abstraction preserving ACTL/ACTL*

We use **Existential Abstraction** in which the abstract model is an **over-approximation** of the concrete model:

- The abstract model has **more behaviors**
- But no concrete behavior is lost

• Every **ACTL/ACTL**\(^*\) property true in the abstract model is also true in the concrete model
ACTL*

- **ACTL*** is a subset of **CTL*** where
 - only *universal* path quantifiers are used
 - negation is restricted to atomic formulas

AG AF restart is an **ACTL*** formula
Given an abstraction function $h : S \rightarrow S_h$, the concrete states are grouped and mapped into abstract states: