Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 4
Model Checking

Automated formal verification:

A different approach to formal verification
Formal Verification

Given
• a model of a (hardware or software) system and
• a formal specification

does the system model satisfy the specification?

Not decidable!

To enable automation, we restrict the problem to a decidable one:

• **Finite-state** reactive systems
• **Propositional** temporal logics
Properties in Propositional Temporal Logic - Examples

• mutual exclusion:
 \(\text{always} \neg (cs_1 \land cs_2) \)

• non starvation:
 \(\text{always} \ (\text{request} \Rightarrow \text{eventually granted}) \)

• communication protocols:
 \((\neg \text{get-message}) \text{ until } \text{send-message} \)
Finite State Systems - Examples

• Hardware designs
• Controllers (elevator, traffic-light)
• Communication protocols (when ignoring the message content)
• High level (abstracted) description of non finite state systems
Model Checking \[CE81, QS82 \]

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property
no + Counterexample, otherwise
Model Checking

- Given a system and a specification, does the system satisfy the specification.
Model of a system
Kripke structure / transition system

Labeled by atomic propositions AP
(critical section, variable value...)

Reactive Systems
Kripke Structure $M=(S, R, L, S_0)$

Given AP – finite set of atomic proposition

- S - (finite) set of states
- $R \subseteq S \times S$ - total transition relation
 For every $s \in S$ there exists $s' \in S$ such that $(s, s') \in R$. Totality means that every path is infinite
- $L: S \rightarrow 2^{AP}$ - labeling function that associates every state with the atomic propositions true in that state
- $S_0 \subseteq S$ - set of initial states (optional)
\(\pi = s_0, s_1, \ldots \) is a path in \(M \) from a state \(s \) if

- \(s = s_0 \) and
- \(R(s_i, s_{i+1}) \) for every \(i \in \mathbb{N} \)

\(\pi^i \) - the suffix of \(\pi \) starting at \(s_i \)
Temporal Logics

Express properties of event orderings in time

- **Linear Time**
 - Every moment has a unique successor
 - Infinite sequences (words)
 - Linear Time Temporal Logic (LTL)

- **Branching Time**
 - Every moment has several successors
 - Infinite tree
 - Computation Tree Logic (CTL)
Propositional Temporal Logic

\(\text{AP} \) – a set of atomic propositions, \(p \in \text{AP} \)

Temporal operators:

- \(Xp \)
- \(Gp \)
- \(Fp \)
- \(pUq \)

Path quantifiers: \(A \) for all path
\(E \) there exists a path
Example to demonstrate:

• Building a model from a program
• Properties
• Model checking
Mutual Exclusion Example

- Two processes with a joint Boolean signal \(\text{sem} \)
- Each process \(P_i \) has a variable \(v_i \) describing its state:
 - \(v_i = N \) Non critical
 - \(v_i = T \) Trying
 - \(v_i = C \) Critical
Mutual Exclusion Example

• Each process runs the following program:

\[P_i :: \text{ while (true) } \{
 \text{ if (} v_i == N \text{) } v_i = T; \\
 \text{ else if (} v_i == T \text{ && sem) } \{ v_i = C; \text{ sem = 0; } \} \\
 \text{ else if (} v_i == C \text{) } \{ v_i = N; \text{ sem = 1; } \}
\} \]

• The full program is: \(P_1 || P_2 \)

• Initial state: \((v_1=N, v_2=N, \text{ sem}) \)

• The execution is interleaving
Mutual Exclusion Example

\[v_1 = N, v_2 = N, \text{sem} \]

\[v_1 = T, v_2 = N, \text{sem} \]

\[v_1 = N, v_2 = T, \text{sem} \]

\[v_1 = C, v_2 = N, \neg \text{sem} \]

\[v_1 = T, v_2 = T, \text{sem} \]

\[v_1 = T, v_2 = C, \neg \text{sem} \]

\[v_1 = N, v_2 = C, \neg \text{sem} \]

\[v_1 = C, v_2 = T, \neg \text{sem} \]

\[v_1 = T, v_2 = C, \neg \text{sem} \]
• We define atomic propositions: $AP=\{C_1, C_2, T_1, T_2\}$
• A state is marked with T_i if $v_i=T$
• A state is marked with C_i if $v_i=C$
• Property 1: $AG^- (C_1 \land C_2)$
• Property 1: $AG^- (C_1 \land C_2)$
• Property 1: $AG \neg (C_1 \land C_2)$
• Property 1: $AG_{\uparrow}(C_1 \land C_2)$
• Property 1: $\mathcal{A}G^{-1}(C_1 \land C_2)$

S_3
\[M \models AG \neg (C_1 \land C_2) \]

\[S_4 \subseteq S_0 \cup S_1 \cup S_2 \cup S_3 \]
• Property 2: $AG(T_1 \land T_2)$
• Property 2: $AG TFT (T_1 \land T_2)$
• Property 2: $AG(T_1 \land T_2)$
\[M \not\models AG \rightarrow (T_1 \land T_2) \]

• A violating state has been found
• $M \not\models AG \rightarrow (T_1 \land T_2)$

Model checker returns a counterexample
• Property 3: $AG((T_1 \rightarrow FC_1) \land (T_2 \rightarrow FC_2))$
Mutual Exclusion Example

No matter where you are there is always a way to get to the initial state (restart)
Temporal logics

We present 3 (propositional) temporal logics:

• CTL*
• CTL
• LTL

CTL and LTL can be described as sub-logics of CTL*
CTL*

State formulas:
- \(p \in AP \)
- \(\neg g_1, g_1 \vee g_2, g_1 \wedge g_2 \) where \(g_1, g_2 \) are state formulas
- \(E f, A f \) where \(f \) is a path formula

Path formulas:
- Every state formula \(g \) is a path formula
- \(\neg f_1, f_1 \vee f_2, f_1 \wedge f_2, X f_1, G f_1, F f_1, f_1 U f_2 \) where \(f_1, f_2 \) are path formulas

CTL* - set of all state formulas
Semantics of CTL*

\[\pi = s_0, s_1, \ldots \text{ is a path in } M \text{ if } R(s_i, s_{i+1}) \text{ for every } i. \]

\[\pi^i - \text{ the suffix of } \pi \text{ starting at } s_i. \]

State formulas:

- \(M, s \models p \iff p \in L(s) \)
- \(M, s \models E f \iff \text{there is a path } \pi \text{ from } s \text{ s.t. } M, \pi \models f \)
- \(M, s \models A f \iff \text{for every path } \pi \text{ from } s, M, \pi \models f \)
Semantics of CTL*

$\pi = s_0, s_1, \ldots$ is a path in M if $R(s_i, s_{i+1})$ for every i.

π^i – the suffix of π starting at s_i.

Path formulas:

- $M, \pi \models g$, where g is a state formula $\iff M, s_0 \models g$

\[\text{Diagram:} \quad \text{Diagram description} \quad \models g \]

\[\text{Diagram:} \quad \text{Diagram description} \quad \models g \]
Semantics of CTL*

\[\pi = s_0, s_1, \ldots \text{ is a path in } M \text{ if } R(s_i, s_{i+1}) \text{ for every } i. \]

\[\pi^i - \text{the suffix of } \pi \text{ starting at } s_i. \]

Path formulas:

- \(M, \pi \models g \), where \(g \) is a state formula \(\iff \ M, s_0 \models g \)

- \(M, \pi \models Xf \iff M, \pi^1 \models f \)
Semantics of CTL*

π = s₀,s₁,... is a path in M if R(sᵢ,sᵢ₊₁) for every i.
πⁱ - the suffix of π starting at sᵢ.

Path formulas:
• M, π ⊨ g, where g is a state formula ⇔ M, s₀ ⊨ g
• M, π ⊨ Xf ⇔ M, π¹ ⊨ f
• M, π ⊨ Gf ⇔ for every k ≥ 0, M, πᵏ ⊨ f
Semantics of $\mathbf{CTL^*}$

$\pi = s_0, s_1, \ldots$ is a path in M if $R(s_i, s_{i+1})$ for every i.
π^i - the suffix of π starting at s_i.

Path formulas:
- $M, \pi \models g$, where g is a state formula $\iff M, s_0 \models g$
- $M, \pi \models Xf$ $\iff M, \pi^1 \models f$
- $M, \pi \models Gf$ \iff for every $k \geq 0$, $M, \pi^k \models f$
- $M, \pi \models Ff$ \iff there exists $k \geq 0$, s.t. $M, \pi^k \models f$
Semantics of CTL*

\(\pi = s_0, s_1, \ldots\) is a path in \(M\) if \(R(s_i, s_{i+1})\) for every \(i\).
\(\pi^i\) - the suffix of \(\pi\) starting at \(s_i\).

- \(M, \pi \models Gf \iff\) for every \(k \geq 0\), \(M, \pi^k \models f\)
- \(M, \pi \models Ff \iff\) there exists \(k \geq 0\), s.t. \(M, \pi^k \models f\)
- \(M, \pi \models f_1 U f_2 \iff\) there exists \(k \geq 0\), s.t. \(M, \pi^k \models f_2\) and for every \(0 \leq j < k\), \(M, \pi^j \models f_1\)
Semantics of CTL*

\[\pi = s_0, s_1, \ldots \text{ is a path in } M \text{ if } R(s_i, s_{i+1}) \text{ for every } i. \]
\[\pi^i \text{ - the suffix of } \pi \text{ starting at } s_i. \]

Path formulas:
- \(M, \pi \models g \), where \(g \) is a state formula \(\iff M, s_0 \models g \)
- \(M, \pi \models X f \iff M, \pi^1 \models f \)
- \(M, \pi \models G f \iff \text{for every } k \geq 0, M, \pi^k \models f \)
- \(M, \pi \models F f \iff \text{there exists } k \geq 0, \text{ s.t. } M, \pi^k \models f \)
- \(M, \pi \models f_1 \cup f_2 \iff \text{there exists } k \geq 0, \text{ s.t. } M, \pi^k \models f_2 \)
 and for every \(0 \leq j < k, M, \pi^j \models f_1 \)
Semantics of Path Formulas

If p,q are state formulas then:

- Xp
- Gp
- Fp
- pUq

But in the general case, they can be path formulas.
Semantics of CTL*

\[M \models g \iff \text{for every initial state } s: M,s \models g \]
Examples
LTL/CTL/CTL*

LTL - state formulas of the form $A\psi$
- ψ - path formula, contains no path quantifiers
- interpreted over infinite computation paths

CTL - state formulas where path quantifiers and temporal operators appear in pairs:
- $AG, AU, AF, AX, EG, EU, EF, EX$
- interpreted over infinite computation trees

CTL - Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL
LTL/CTL/CTL*

LTL - state formulas of the form $A\psi$
- ψ - path formula, contains no path quantifiers
- interpreted over infinite computation paths

CTL - state formulas where path quantifiers and temporal operators appear in pairs:
- $AG, AU, AF, AX, EG, EU, EF, EX$
- interpreted over infinite computation trees

CTL - Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL
LTL

State formulas:
• \(A f \) where \(f \) is a path formula

Path formulas:
• \(p \in AP \)
• \(\neg f_1, f_1 \lor f_2, f_1 \land f_2, X f_1, G f_1, F f_1, f_1 \cup f_2 \) where \(f_1, f_2 \) are path formulas

LTL - set of all state formulas
CTL

CTL - set of all state formulas

- \(p \in AP \)
- \(\neg g_1, \ g_1 \lor g_2, \ g_1 \land g_2 \)
- \(AX \ g_1, \ AG \ g_1, \ AF \ g_1, \ A \ g_1 \ U \ g_2 \)
- \(EX \ g_1, \ EG \ g_1, \ EF \ g_1, \ E \ g_1 \ U \ g_2 \)

where \(g_1, g_2 \) are state formulas
Semantics of CTL

Recall: path $\pi = s_0, s_1, ...$

- $M,s \models p \iff p \in L(s)$ for $p \in AP$

- $M,s \models \varphi_1 \lor \varphi_2 \iff M,s \models \varphi_1$ or $M,s \models \varphi_2$

- $M,s \models EX\varphi \iff$ there is s' s.t. $R(s,s')$ and $M,s' \models \varphi$

- $M,s \models EG\varphi \iff$ there is a path π from s, s.t. for every $i \geq 0$, $M,s_i \models \varphi$
Semantics of CTL

• \(\mathcal{M}, s \models E[\varphi_1 U \varphi_2] \iff \) there is a path \(\pi \) from \(s \) and there is \(k \geq 0 \) s.t. \(\mathcal{M}, s_k \models \varphi_2 \) and for every \(k > i \geq 0 \), \(\mathcal{M}, s_i \models \varphi_1 \)

• \(\mathcal{M}, s \models AG \varphi \iff \) for every path \(\pi \) from \(s \) and for every \(i \geq 0 \), \(\mathcal{M}, s_i \models \varphi \)

• \(\mathcal{M}, s \models AF \varphi \iff \) for every path \(\pi \) from \(s \) there exists \(i \geq 0 \) s.t. \(\mathcal{M}, s_i \models \varphi \)
Illustration of CTL Semantics

$\text{EF}_{p} :$

"exists reachable state s.t."

$\text{AF}_{p} :$

$\text{EG}_{p} :$

$\text{AG}_{p} :$

"all reachable states..."
Property types

<table>
<thead>
<tr>
<th></th>
<th>Universal</th>
<th>Existential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>AG(_p)</td>
<td>EG(_p)</td>
</tr>
<tr>
<td>Liveness</td>
<td>AF(_p)</td>
<td>EF(_p)</td>
</tr>
</tbody>
</table>
Examples (LTL)

1. $AG \neg (\text{start} \land \neg \text{ready})$
2. $AG (\text{req} \rightarrow \text{Fack})$
3. $A \text{GF enabled}$
4. $A \text{FG deadlock}$
5. $A (\text{GF enabled} \rightarrow \text{GF running})$

Cannot express existential properties: “from any state the system can...”
Examples (CTL)

1. EF (start∧¬ready)
2. AG (req → AF ack)
3. AG (AF enabled)
4. AF (AG deadlock)
5. AG (EF restart)
6. AG (non_critical → EX tryring)
7. AG (try → A[try U succeed])
Equivalence

• Path formulas ψ_1, ψ_2 are equivalent if:
 For every M and path π
 $M, \pi \models \psi_1$ iff $M, \pi \models \psi_2$

• State formulas φ_1, φ_2 are equivalent if:
 For every M and state s
 $M, s \models \varphi_1$ iff $M, s \models \varphi_2$
Expressiveness

\(\neg, \lor, X, U, E\) suffice to express all CTL*:

- \(Ff \equiv \text{true} \ U \ f\)
- \(Gf \equiv \neg F(\neg f)\)
- \(Af \equiv \neg E(\neg f)\)

In CTL: \(EX, EG, EU\) are sufficient

- \(A [pUq] \equiv (\neg EG \neg q) \land \neg E[\neg q U (\neg p \land \neg q)]\)
LTL vs. CTL

• **A (FG p)** has no equivalent in CTL
 “in all paths, p globally holds from some point on”

• **Failed attempts:**

 AFAGP : “in every path there is a point from which all reachable states satisfy p.”

All paths satisfy FGp
- s₀,s₀,s₀,…
- s₀,s₀,…s₀,s₁,s₂,s₂,…
But first one does not sat FAGp
LTL vs. CTL

- A \((FG \ p)\) has no equivalent in CTL
 “in all paths, \(p\) globally holds from some point on”

- What about \(AFEGP\)?
 “in every path there is a point from which there is a path where \(p\) globally holds”

- All paths satisfy \(FEGp\)
 - since \(s_1\) sat \(EGp\)
 But \(s_0,s_1,s_0,s_1,s_0,s_1\ldots\) does not sat \(FGp\)
LTL vs. CTL

- **AG (EFp)** has no equivalent in LTL
 - “all reachable states can reach p”

- Failed attempt:
 - $AGFp$: “in all paths, p holds infinitely many times.”

All reachable states (s_0, s_1) satisfy EFp

But s_0, s_0, s_0, \ldots does not satisfy GFp
LTL and CTL vs. CTL*

• $E (GFp)$ has no equivalent in LTL or CTL