Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 8
Model Checking

- Emerging as an industrial standard tool for verification of **hardware** designs: Intel, IBM, Cadence, Mellanox, ...

- Recently applied successfully also for **software** verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford), ...
Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking
Main Limitation of Model Checking:

The state explosion problem:

Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system
Solutions to the state-explosion problem

Symbolic model checking:
The model is represented symbolically

- BDD-based model checking
- SAT-based Bounded Model Checking (BMC)
- SAT-based Unbounded Model Checking
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

- Abstraction
- Compositional verification
- Partial order reduction
- Symmetry
Symbolic (BDD-based) Model Checking for CTL
BDD-based Symbolic Model Checking

A solution to the state explosion problem: BDD-based model checking

- **Binary Decision Diagrams (BDDs)** are used to represent the model and sets of states.

- It can handle systems with hundreds of Boolean variables.
Binary Decision Diagrams (BDDs)

• Data structure for representing Boolean functions

• Boolean function:

\[f: \{0,1\}^k \rightarrow \{0,1\} \]

\[f(x_1, ..., x_k) = x_{k+1} \]

where \(x_1, ..., x_k, x_{k+1} \in \{0,1\} \)
BDD for \(f(a,b,c) = (a \land b) \lor c \)
Binary Decision Diagrams (BDDs)

Advantages of BDDs:

• Often (but not always) *concise* in size

• *Canonical* representation

• Most *Boolean operations* can be performed on BDDs in *polynomial time* in the BDD size
BDDs in Model Checking

• Every set \(A \subseteq U \) can be represented by its characteristic function

\[
\begin{align*}
f_A(u) = \begin{cases}
1 & \text{if } u \in A \\
0 & \text{if } u \notin A
\end{cases}
\end{align*}
\]

• If the elements of \(U \) are encoded by sequences over \(\{0,1\}^n \) then \(f_A \) is a Boolean function and can be represented by a BDD
• A Boolean function represents the set of all elements for which the function is 1
Representing a Model with BDDs

- Assume that states in model M are encoded by \(\{0,1\}^n \) and described by Boolean variables \(v_1 \ldots v_n \)

- \(S_f \) can be represented by a Boolean function (BDD) over \(v_1 \ldots v_n \)

- \(R \) (a set of pairs of states \((s,s')\)) can be represented by a BDD over \(v_1 \ldots v_n, v'_1 \ldots v'_n \)
Example: Representing a Model with BDDs

\[S = \{ s_1, s_2, s_3 \} \]
\[R = \{ (s_1,s_2), (s_2,s_2), (s_3,s_1) \} \]

State encoding:
\[s_1: v_1v_2=00 \quad s_2: v_1v_2=01 \quad s_3: v_1v_2=11 \]

For \(A = \{s_1, s_2\} \) the Boolean formula representing \(A \):
\[f_A(v_1, v_2) = (\neg v_1 \land \neg v_2) \lor (\neg v_1 \land v_2) = \neg v_1 \]
Example: Representing a Model with BDDs

State encoding:
\(s_1: v_1 v_2 = 00 \quad s_2: v_1 v_2 = 01 \quad s_3: v_1 v_2 = 11 \)

For \(A = \{ s_1, s_2 \} \) the Boolean formula representing \(A \):
\[
f_A(v_1, v_2) = (\neg v_1 \land \neg v_2) \lor (\neg v_1 \land v_2) = \neg v_1
\]

\(f_A \) represents \(A \) if it gets the value 1 for every assignment which is an encoding of an element of \(A \).
\[f_R(v_1, v_2, v'_1, v'_2) = (\neg v_1 \land \neg v_2 \land \neg v'_1 \land v'_2) \lor (\neg v_1 \land v_2 \land \neg v'_1 \land v'_2) \lor (v_1 \land v_2 \land v'_1 \land v'_2) \]

\[f_A \text{ and } f_R \text{ can be represented by BDDs.} \]
BDDs as a data structure

A BDD for a Boolean function $f(x_1, \ldots, x_k)$ is a directed acyclic graph (DAG) with a root and two types of nodes:

- **Internal nodes** v with fields
 - $\text{var}(v)$ containing a variable name
 - Pointers $\text{low}(v)$, $\text{high}(v)$ to other nodes
- **End nodes** (leaves) v with field
 - $\text{value}(v) \in \{0, 1\}$
Reduced, Ordered BDD (ROBDD)

To obtain a canonical representation, the following requirements are added:

• A variable appears at most once along every path from root to leaf
• The variables appear in the same order along every path from root to leaf
• The graph does not contain
 - isomorphic sub-graphs
 - Redundant nodes
Two graphs with root nodes u and v are isomorphic iff

- If u and v are leaves then $\text{value}(u)=\text{value}(v)$
- If u and v are internal nodes then
 - $\text{var}(u)=\text{var}(v)$
 - $\text{low}(u)$ and $\text{low}(v)$ are isomorphic
 - $\text{high}(u)$ and $\text{high}(v)$ are isomorphic

A node v is redundant if $\text{low}(v)=\text{high}(v)$
Remark: From now on we will use BDD to denote ROBDD
Order of Variables in the BDD

- $f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2)$
- Assume the variable order is: $a_1 < b_1 < a_2 < b_2$:
Order of Variables in the BDD

- In the general case: $a_1 < \ldots < a_n < b_1 < \ldots < b_n$
- $f(a_1, b_1, \ldots, a_n, b_n) = (a_1 \leftrightarrow b_1) \land \ldots \land (a_n \leftrightarrow b_n)$
- BDD with $3n + 2$ nodes
Order of Variables in the BDD

- \(f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land (a_2 \leftrightarrow b_2) \)
- Assume the variable order is: \(a_1 < a_2 < b_1 < b_2 \):
Order of Variables in the BDD

• In the general case: $a_1 < ... < a_n < b_1 < ... < b_n$:

• $f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land ... \land (a_n \leftrightarrow b_n)$

• From a_1 to b_1 (including b_1) - full binary tree of depth $n+1$. Total of $2^{n+1}-1$ nodes

• Every b_1 remembers a specific assignment to $a_1, ..., a_n$. Thus 2^n nodes of b_1 (for all possible assignments of $a_1, ..., a_n$)

• Similarly, 2^{n-1} nodes of b_2 (for possible assignments of $a_2, ..., a_n$)

•

• 2 nodes of b_n (for possible assignments of a_n)
Order of Variables in the BDD

• In the general case: \(a_1 < \ldots < a_n < b_1 < \ldots < b_n\):

\[f(a_1, b_1, a_2, b_2) = (a_1 \leftrightarrow b_1) \land \ldots \land (a_n \leftrightarrow b_n) \]

• Sum of geometric sequence:

\[S_n = a_1 \cdot (q^n - 1)/(q-1) \text{ (where } a_n=a_1 \cdot q^{n-1} \text{)} \]

\[2 + \ldots + 2 \cdot 2^{n-1} = \frac{2 \cdot (2^{n-1}-1)}{2-1} = 2^n - 2 \]

• Total number of nodes:

\[2 + (2^n-2) + (2^{n+1}-1) = 3 \cdot 2^n - 1 \]
Order of Variables in the BDD

Conclusion:
• The order of variables can influence significantly the size of the BDD

• Finding an optimal variable order is a hard problem
 - Heuristics are used
Given a BDD – which Boolean function does it represent?

A BDD with root v represents the function $f_v(x_1, \ldots, x_n)$ as follows:

- If v is a leaf then $f_v(x_1, \ldots, x_n) = \text{value}(v)$
- If v is internal and $\text{var}(v) = x_i$ then

 $$f_v(x_1, \ldots, x_n) = (\neg x_i \land f_{\text{low}(v)}(x_1, \ldots, x_n)) \lor (x_i \land f_{\text{high}(v)}(x_1, \ldots, x_n))$$
Example

- \(\text{var}(v_1) = a, \text{var}(v_2) = b, \text{var}(v_3) = c \)
- \(\text{value}(v_4) = 0, \text{Value}(v_5) = 1 \)
- \(f_{v_3}(a, b, c) = (\neg c \land f_{v_4}(a, b, c)) \lor (c \land f_{v_5}(a, b, c)) \)
 \[= (\neg c \land 0) \lor (c \land 1) = c \]
- \(f_{v_2}(a, b, c) = (\neg b \land f_{v_3}(a, b, c)) \lor (b \land f_{v_5}(a, b, c)) \)
 \[= (\neg b \land c) \lor (b \land 1) = (b \lor c) \]
\[f_{v1}(a, b, c) = \neg a \land f_{v3}(a, b, c) \lor (a \land f_{v2}(a, b, c)) = \]
\[= (\neg a \land c) \lor (a \land (b \lor c)) = \]
\[= (c \lor (a \land b)) \]

The BDD represents many functions, all equivalent to each other.
Advantage of BDDs (revisited)

• Often (but not always) **concise** in size

• **Canonical** representation for a given variable ordering
 – Easy to check **equivalence** between two functions

• A function depends exactly on all variables that appear in its BDD

• Most **Boolean operations** can be performed on BDDs in **polynomial time** in the BDD size
Operations on BDDs
Reduce

Given an unreduced BDD:

• Eliminate isomorphic sub-graphs:
 - Eliminate duplicated end nodes
 - Eliminate duplicated internal nodes

• Eliminate redundant nodes

Reduce works bottom-up in linear time in the BDD size
Important remark:
BDD for a complex function is built bottom-up starting from small sub-functions to larger ones

We do not build a full decision tree and then reduce
Operations on BDDs - Restrict

Restrict

Given a BDD for \(f(x_1,\ldots,x_n) \), build a BDD for

\[f\big|_{x_i=b} (x_1,\ldots,x_n) = f(x_1,\ldots,x_{i-1},b,x_{i+1},\ldots,x_n) \]

Example:

\[f(x_1,x_2,x_3,x_4) = (x_1 \land x_2) \lor (x_3 \land x_4) \]

\[f\big|_{x_2=0} (x_1,x_2,x_3,x_4) = (x_1 \land 0) \lor (x_3 \land x_4) = (x_3 \land x_4) \]
Operations on BDDs - Restrict

Given a BDD A for $f(x_1, ..., x_n)$, build a BDD for $f|_{x_i=b}(x_1, ..., x_n) = f(x_1, ..., x_{i-1}, b, x_{i+1}, ..., x_n)$

- Traverse A from root to leaves
- For every node v with $\text{var}(v)=x_i$
 - Eliminate v from B
 - Replace edges to v by edges to low(v), if $b=0$
 and to high(v), if $b=1$
- Run Reduce
Example: Restrict

\[
f(x_1, x_2, x_3, x_4) = (x_1 \land x_2) \lor (x_3 \land x_4)
\]

\[
f_{|x_2=0}(x_1, x_2, x_3, x_4) = (x_1 \land 0) \lor (x_3 \land x_4) = (x_3 \land x_4)
\]
Operations on BDDs - Apply

• Gets two BDDs, representing functions f and f' and an operation $*$
 - Over the same variable ordering

• Returns the BDD representing $f*f'$

• $*$ can be any of 16 binary operations on two Boolean functions
16 binary operations

<table>
<thead>
<tr>
<th>f</th>
<th>f'</th>
<th>f_1</th>
<th>f_2</th>
<th>f_3 ... f_{15}</th>
<th>f_{16}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 ... 0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0 ... 1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 ... 1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0 ... 1</td>
<td>1</td>
</tr>
</tbody>
</table>

const 0 AND ? **OR** **const 1**
Operations on BDDs - Apply

• Shannon expansion for every Boolean function \(f \) and a variable \(x \):

\[
f = (\neg x \land f|_{x=0}) \lor (x \land f|_{x=1})
\]

Notation:

• \(v,v' \) are the roots of \(f,f' \), respectively
• If \(v,v' \) are not end nodes then \(\text{var}(v)=x \), \(\text{var}(v')=x' \)
Operations on BDDs - Apply

Computing $f \cdot f'$:

- **Case 1**: v and v' are end nodes

 \[f \cdot f' = \text{value}(v) \cdot \text{value}(v') \]

- The BDD for $f \cdot f'$ consists of one leaf v'' with
 \[\text{value}(v'') = \text{value}(v) \cdot \text{value}(v') \]

This is the only case where \(*\) is taken into account
Operations on BDDs - Apply

Computing $f \cdot f'$:

- **Case 2**: $x = x'$
- Use Shannon expansion:

\[
f \cdot f' = (\neg x \land (f|_{x=0} \cdot f'|_{x=0})) \lor (x \land (f|_{x=1} \cdot f'|_{x=1}))
\]

- Two simpler sub-problems to solve
 - Each depends on one less variable
End of lecture
5.12.2017
Operations on BDDs - Apply

Computing \(f \cdot f' \):

- **Case 2**: \(x = x' \)

- The BDD for \(f \cdot f' \)

- Root: a new node \(v'' \)
 - \(\text{var}(v'') = x \)
 - \(\text{low}(v'') \) points to the root of the BDD for \((f \mid_{x=0} \cdot f' \mid_{x=0}) \)
 - \(\text{high}(v'') \) points to the root of the BDD for \((f \mid_{x=1} \cdot f' \mid_{x=1}) \)
Example

- $f(a) = a$, $f'(a) = \neg a$, \ast is \lor

- The BDD for $f \lor f'$ is:

- The BDD for $f \lor f'$ is: reduce