Lecture 3
Floyd Proof Rule for Partial Correctness

To prove $\{q_1\} P \{q_2\}$:

1. Choose a set of cut points such that:
 i. start and halt are cut points
 ii. every cycle in the graph of P contains at least one cut point

2. For every cut point l find an inductive assertion $I_l(\bar{x})$, such that $I_{l_0}(\bar{x}) = q_1(\bar{x})$, $I_{l^*}(\bar{x}) = q_2(\bar{x})$
Floyd Proof Rule for Partial Correctness (cont.)

3. For every basic path $\alpha = (l, l')$ prove:
$$\forall \bar{x} [I_l(\bar{x}) \land R_\alpha(\bar{x}) \rightarrow I_{l'}(T_\alpha(\bar{x}))]$$

If we successfully applied the proof rule for some invariants we will write
$$\vdash_F \{q_1\} P \{q_2\}$$
Floyd Proof Rule for Partial Correctness

Soundness of Floyd proof system (F):

If \(\vdash_F \{ q_1 \} P \{ q_2 \} \)

then \(\models \{ q_1 \} P \{ q_2 \} \)
Floyd Proof Rule for Partial Correctness

Lemma:
If $\vdash_F \{q_1\} P \{q_2\}$ then for every computation π of P from l_0 with state σ such that $\sigma \models q_1(\bar{x})$ if the computation reaches cut point l' with state σ' then $\sigma' \models I_{l'}(\bar{x})$

Proof:
By induction on the number of cut points traversed in π
Floyd Proof Rule for Partial Correctness

Completeness of the proof system F:

If $\vdash_{=\{q_1\}} \{q_2\}$

then $\vdash_{\sim} \{q_1\} \{q_2\}$

We will not prove this.
Floyd Proof Rule for Partial Correctness (cont.)

If we change the requirement

3. For every basic path $\alpha = (l, l')$ prove:
 \[\forall \bar{x} [I_l(\bar{x}) \land R_\alpha(\bar{x}) \rightarrow I_{l'}(T_\alpha(\bar{x}))] \]

To
 \[\forall \bar{x} [I_l(\bar{x}) \rightarrow I_{l'}(T_\alpha(\bar{x}))] \]

Will the new rule be sound? Complete?
F* Proof Rule for Proving Termination (full correctness)

We would like to prove \(<p>S<q>\)

Example:
Flowchart: Example

\[P_{\text{div::}} \]

\[l_0: \text{start} \]

\[l_1: (q, r) := (0, x_1) \]

\[l_2: r \geq x_2 \]

\[l_3: (q, r) := (q+1, r-x_2) \]

\[l_*: \text{halt} \]
Well Founded Sets

A set W with a (possibly partial) order \prec (i.e., (W,\prec)) is a well founded set if there is no infinitely decreasing sequences in W. That is, there is no sequence $w_i \in W$ such that:

\[w_0 \succ w_1 \succ w_2 \succ \ldots \]
Well Founded Sets - Examples

The partially ordered set \((2^A, \subseteq)\) for \(A=\{1,2\}\)
Well Founded Sets - Examples

- Naturals with the usual order $\langle \mathbb{N}, \langle \rangle$ is a well founded set
- Integers with the usual order \langle is not well founded
- Positive rational numbers with the usual order \langle is not well founded
- $(2^A, \subseteq)$ for any finite A is well founded
- $(2^A, \subseteq)$ for an infinite A is not well founded
- $\mathbb{N} \times \mathbb{N}$ with the lexicographical order is a well founded set
F* Proof System for Proving Termination (full correctness)

To prove $\langle q_1 \rangle P \langle \text{true} \rangle$:
1. Choose (W,\prec) to be (\mathbb{N},\prec) with the usual order
2. Choose a cut set as in F
3. For every cut point l find a parameterized inductive assertion $I_l(\overline{x},w)$ where $w \in W$
4. Prove (in First order logic):

- **(INIT)** \(\forall \bar{x} [q_1(\bar{x}) \rightarrow \exists w (I_{l_0}(\bar{x}, w))] \)

- **(DEC)** For every basic path \(\alpha = (l, l') \) prove:

\[
\forall w \forall \bar{x} \left[I_l(\bar{x}, w) \land R_\alpha(\bar{x}) \rightarrow \exists w' \left(w' < w \land I_{l'}(T_\alpha(\bar{x}), w') \right) \right]
\]
If we successfully applied the proof rule for some invariants we will denote

$$\vdash_{F^*} < q_1 > P < true >$$
F* Proof System for Proving Termination *(full correctness)*

To prove $<q_1> P <q_2>$ we need to prove in addition in First order logic:

$$\forall w \forall \bar{x} [I_{l^*} (\bar{x}, w) \rightarrow q_2 (\bar{x})]$$
Soundness of the proof system F^*:

If $\vdash_{F^*} < q_1 > P < q_2 >$

then $\models < q_1 > P < q_2 >$
F* Proof System for Proving Termination (full correctness)

Lemma:

If $\vdash_{F\star} <q_1>P<\text{true}>$ then for every computation π of P from l_0 with state σ such that $\sigma \models q_1(\bar{x})$ if the computation reaches cut point l' with state σ' then there is $v \in W$ such that $\sigma' \models I_{l'}(\bar{x}, v)$.

In addition, if the computation pass through cutpoints $l_0, l_1, ...$ with states $\sigma_0, \sigma_1, ...$ then there exists a sequence $v_0 > v_1 > ...$ such that for every I, $\sigma_i \models I_{l_i}(\bar{x}, v_i)$.
F* Proof System for Proving Termination (full correctness)

Completeness of the proof system F* :
If $\equiv < q_1 > P < q_2 >$
then $\vdash_{F*} < q_1 > P < q_2 >$