Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 7
Model Checking Complexity

- Each subformula requires $O(|M|)$
- Number of subformulas: $O(|f|)$
- Total: $O(|M| \times |f|)$
Property

- AG (Start → AF Heat)
- □EF (Start ∧ EG □¬Heat)
- □E (true U (Start ∧ EG □¬Heat))

Instead of writing the formulas in label(s) for each s, use $S(f)$ to denote the set of states s.t. $f \in \text{label(s)}$
\(\neg E \) (true U (Start \land EG \neg Heat))

- \(S(\text{Start}) \): \{2,5,6,7\}
- \(S(\neg \text{Heat}) \): \{1,2,3,5,6\}
- \(S(\neg \text{Heat}) \): \{1,2,3,5\}

Transition diagram:
- Start Error
 - Start
 - Close
- Close
 - Open
 - Close
 - Start
- Close Heat
 - Open
 - Cook
- Start Close Heat
 - Start
 - Warmup
 - Close
 - Start
- Start Close Error
 - Close
 - Open
 - Reset
 - Start
\(-E (\text{true } \cup (\text{Start } \land \text{EG } \neg \text{Heat}))\)

\begin{align*}
S(\text{Start}) : & \{2,5,6,7\} \\
S(\neg \text{Heat}) : & \{1,2,3,5,6\} \\
S(\text{EG } \neg \text{Heat}) : & \{1,2,3,5\}
\end{align*}

\begin{align*}
S(\text{Start } \land \text{EG } \neg \text{Heat}) : & \{2,5\} \\
S(\text{EU}) : & \{1,2,3,4,5,6,7\} \\
S(f) : & \emptyset
\end{align*}
Explicit Model Checking for Fair
CTL
Motivation
Fair CTL (CTL^F)

- Same syntax as CTL
- Different semantics

CTL^F formulas are interpreted over fair Kripke structures
Fair Kripke Structures

Fair Kripke structure $M = (S, S_0, R, L, F)$

- S, S_0, R, L - as before
- $F \subseteq 2^S$ is a set of fairness constraints

- $F = \{ P_1, \ldots, P_k \}$ where
 - $P_i \subseteq S$
 - or
 - P_i is a CTL formula
Fairness

Fair paths:
• $\pi = s_0, s_1, s_2, ...$
• $\inf(\pi) = \{ s \mid s = s_i \text{ for infinitely many } i \}$

π is fair if for every $P \in F$, $\inf(\pi) \cap P \neq \emptyset$
Example

• $F = \{ \{1,4\}, \{1,6\}, \{3\} \}$

• A path π is fair iff $\text{inf}(\pi)$ includes one of the sets:
 • $\{1, 3\}$
 • $\{4, 6, 3\}$
 • Or their extensions
Semantics of Fair CTL

• $M, s \models_{F} EX \psi \iff$ there exists a fair path
 $\pi = s_{0}, s_{1}, \ldots$ from s such that $M, s_{1} \models_{F} \psi$

• $M, s \models_{F} AX \psi \iff$ for every fair path
 $\pi = s_{0}, s_{1}, \ldots$ from s, $M, s_{1} \models_{F} \psi$

• Similarly for EG, AG, EU, AU, \ldots
Examples

Fairness constraints for hardware design, expressed as formulas:

• One input that should be 1 infinitely often
• K inputs, each should be 1 infinitely often
• K inputs that should be 1 together infinitely often
Model checking Fair CTL

- Needs to consider only fair paths

- \(g \in \text{label}(s) \iff M,s \models F g \)
Reminder: Model Checking $g = EG f_1$
without fairness

Observation:
- $s \models EG f_1$
 iff
- s is the start of a path where all states satisfy f_1
 iff
- s has a finite path to a nontrivial, Maximal Strongly Connected Component (MSCC), where all states satisfy f_1
Model Checking $g = EG f_1$
with fairness

Observation:
- $s \models_F EG f_1$
 iff
- s is the start of a \textit{fair} path where all states satisfy f_1
 iff
- s has a finite path to a nontrivial Maximal \textbf{Fair}
 Strongly Connected Component (MFSCC), where all states satisfy f_1
\[M, s \models_{F} EG f_{1} \]

Strongly connected component \(C \) is fair iff for every \(P \in F \), \(C \cap P \neq \emptyset \)

Reduced structure:
Remove from \(M \) all states s.t. \(f_{1} \notin \text{label}(s) \).

Resulting model: \(M' = (S', R', L', F') \)
- \(S' = \{ s \mid M, s \models_{F} f_{1} \} \)
- \(R', L' \) defined as before
- \(F' = \{ P_i \cap S' \mid P_i \in F \} \)
Theorem: $M, s \models_F EG f_1$ iff
1. $s \in S'$ and
2. There is a path in M' from s to some state t in a nontrivial maximal fair strongly connected component of M'

Proof: similar to theorem for EG without fairness
$M, s \models_F EG f_1$

procedure $\text{CheckFairEG} (f_1)$

$S' := \{ s \mid f_1 \in \text{label}(s) \}$

$\text{MFSCC} := \{ C \mid C \text{ is a nontrivial } \text{fair MSCC of } M' \}$

$T := \bigcup_{C \in \text{MFSCC}} \{ s \mid s \in C \}$

For all $s \in T$ do $\text{label}(s) := \text{label}(s) \cup \{ \text{EG } f_1 \}$

while $T \neq \emptyset$ do

choose $s \in T$; $T := T \setminus \{s\}$;

for all $t \in S'$ s.t. $R'(t,s)$ do

if $\text{EG } f_1 \notin \text{label}(t)$ then

$\text{label}(t) := \text{label}(t) \cup \{ \text{EG } f_1 \}$;

$T := T \cup \{t\}$

end for all

end while

Complexity increases to $O((|S| + |R|) \cdot |F|)$
$M, s \models_F EGa$ with $F = \{ \{1, 2\}, \{1, 5\} \}$

$F' = \{ \{1\} \}$

$MSCC = \{ \{1\}, \{3, 4\}, \{6\} \}$

$F_{MSCC} = \emptyset$

Set of states satisfying $E_F Ga$ is empty
Model Checking other Fair CTL Formulas

• Add atomic proposition \textit{fair} to all states that satisfy \(M,s \models F \text{EG true} \)

\[
M,s \models F \text{EX } f_1 \text{ iff } M,s \models \text{EX } (f_1 \land \text{fair})
\]

\[
M,s \models F \text{E } [f_1 \text{ U } f_2] \text{ iff } M,s \models \text{E } [f_1 \text{ U } (f_2 \land \text{fair})]
\]

Overall complexity: \(O(|f| \cdot (|S| + |R|) \cdot |F|) \)
Computing S_{fair} with $F=\{ \{1,2\}, \{1,5\} \}$

MSCC = $\{ \{0\}, \{1\}, \{2,3,4,5\}, \{6\} \}$

FMSCC = $\{ \{2,3,4,5\} \}$

$S_{\text{fair}} = \{2,3,4,5\} \cup \{0,1\}$
$\mathcal{M}, s \models_F E(a \cup c)$ with $F=\{ \{1,2\}, \{1,5\}\}$

$S_{fair} = \{0,1,2,3,4,5\}$

$E_F(a \cup c) \equiv E(a \cup (c \land \text{fair})) = \varnothing$

$S_a = \{1,3,4,6\}$ $S_c = \{0,3,6\}$

$S_{fair \land c} = \{0,3\}$

$S_\varnothing = \{0,3,4\}$
Microwave Example

Fairness:
\(\text{Start} \land \text{Close} \land \neg \text{Error}\)
Property

- $AG (\text{start} \rightarrow \text{AF Heat})$
- $\neg EF (\text{start} \land EG \neg \text{Heat})$
- $\neg E (\text{true U (start} \land EG \neg \text{Heat}))$

Now we check it with respect to a fair Kripke structure
\neg E (true U (start \land EG \neg Heat))
\[\neg E (\text{true} \ U (\text{start} \land EG \neg \text{Heat})) \]

All states belong to the same nontrivial fair SCC
\[\Rightarrow \] All states labeled fair
$E \neg (\text{true } \cup \text{ (start } \land \text{ EG } \neg \text{Heat}))$

$S(\text{Start}): \{2,5,6,7\}$
$S(\neg\text{Heat}): \{1,2,3,5,6\}$
$S(\text{EG }\neg\text{Heat}): \emptyset$

Not fair
\(\neg E (\text{true } U (\text{start } \land EG \neg \text{Heat})) \)

- \(S(\text{Start}) : \{2,5,6,7\} \)
- \(S(\neg \text{Heat}) : \{1,2,3,5,6\} \)
- \(S(EG \neg \text{Heat}) : \emptyset \)

- \(S(\text{Start } \land EG \neg \text{Heat}) : \emptyset \)
- \(S(\text{EU}) : \emptyset \)
- \(S(f) : \{1,2,3,4,5,6,7\} \)
Model Checking

- Emerging as an industrial standard tool for verification of *hardware* designs: Intel, IBM, Cadence, Mellanox, ...

- Recently applied successfully also for *software* verification: SLAM (Microsoft), Java PathFinder and SPIN (NASA), BLAST (EPFL), CBMC (Oxford),...
Clarke, Emerson, and Sifakis won the 2007 Turing award for their contribution to Model Checking
Main Limitation of Model Checking:

The state explosion problem:

Model checking is efficient in time but suffers from high space requirements:

The number of states in the system model grows exponentially with

- the number of variables
- the number of components in the system
Solutions to the state-explosion problem

Symbolic model checking:
The model is represented symbolically

- BDD-based model checking
- SAT-based Bounded Model Checking (BMC)
- SAT-based Unbounded Model Checking
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

- Abstraction
- Compositional verification
- Partial order reduction
- Symmetry
Symbolic (BDD-based) Model Checking for CTL
BDD-based Symbolic Model Checking

A solution to the state explosion problem: BDD-based model checking

• **Binary Decision Diagrams (BDDs)** are used to represent the model and sets of states.

• It can handle systems with hundreds of Boolean variables.
Binary Decision Diagrams (BDDs)

• Data structure for representing Boolean functions

• Boolean function:
 \[f: \{0,1\}^k \rightarrow \{0,1\} \]
 \[f(x_1, \ldots, x_k) = x_{k+1} \]
 where \(x_1, \ldots, x_k, x_{k+1} \in \{0,1\} \)
BDD for \(f(a,b,c) = (a \land b) \lor c \)
Binary Decision Diagrams (BDDs)

Advantages of BDDs:

• Often (but not always) **concise** in size

• **Canonical** representation

• Most **Boolean operations** can be performed on BDDs in **polynomial time** in the BDD size
BDDs in Model Checking

• Every set $A \subseteq U$ can be represented by its characteristic function

 $f_A(u) = \begin{cases}
 1 & \text{if } u \in A \\
 0 & \text{if } u \notin A
 \end{cases}$

• If the elements of U are encoded by sequences over $\{0,1\}^n$ then f_A is a Boolean function and can be represented by a BDD
• A Boolean function represents the set of all elements for which the function is 1
Representing a Model with BDDs

- Assume that **states** in model M are **encoded by** $\{0,1\}^n$ and described by Boolean variables $v_1...v_n$

- S_f can be represented by a Boolean function (BDD) over $v_1...v_n$

- R (a set of pairs of states (s,s')) can be represented by a BDD over $v_1...v_n$ $v_1'...v_n'$
Example: Representing a Model with BDDs

\[S = \{ s_1, s_2, s_3 \} \]
\[R = \{ (s_1,s_2), (s_2,s_2), (s_3,s_1) \} \]

State encoding:
\[s_1: \ v_1v_2=00 \quad s_2: \ v_1v_2=01 \quad s_3: \ v_1v_2=11 \]

For \(A = \{s_1, s_2\} \) the Boolean formula representing \(A \):
\[f_A(v_1,v_2) = (\neg v_1 \land \neg v_2) \lor (\neg v_1 \land v_2) = \neg v_1 \]
$R = \{ (s_1, s_2), (s_2, s_2), (s_3, s_1) \}$

$s_1: v_1v_2=00 \quad s_2: v_1v_2=01 \quad s_3: v_1v_2=11$

$f_R(v_1, v_2, \neg v_1, \neg v_2) =$

$(\neg v_1 \land \neg v_2 \land \neg v'_1 \land v'_2) \lor$

$(\neg v_1 \land v_2 \land \neg v'_1 \land v'_2) \lor$

$(v_1 \land v_2 \land \neg v'_1 \land \neg v'_2)$

f_A and f_R can be represented by BDDs.