Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 10
Symbolic (BDD-based) Model Checking for CTL
BDD-based Model Checking

- Accept: Kripke structure \(M \), CTL formula \(f \)
- Returns: \(S_f \) - the set of states satisfying \(f \)

\(M \) is given by:
- BDD \(R(V,V') \), representing the transition relation
- BDD \(p(V) \), for every \(p \in AP \), representing \(S_p \)
 - the set of states satisfying \(p \)
- \(V = (v_1,\ldots,v_n) \)
BDD-based Model Checking

• The algorithm works from simpler formulas to more complex ones
• When a formula g is handled, the BDD for S_g is built
• A formula is handled only after all its sub-formulas have been handled
BDD-based Model Checking

- For $p \in AP$, return $p(V)$
- For $f = f_1 \land f_2$, return $f(V) = f_1(V) \land f_2((V)$ (using apply)
- For $f = \neg f_1$, return $f(v) = \neg f_1(V)$
BDD-based Model Checking

• For \(f = \text{EX} f_1 \) return
 \[f(V) = \exists V' [f_1(V') \land R(V,V')] \]

• This BDD represents all (encoding \(V \) of) states that have a successor (with encoding \(V' \)) in \(f_1 \)
• Defined as a new BDD operator:

\[\text{EX } f_1(V) = \exists V' \ [f_1(V') \land R(V,V')] \]

• This operation is also called \text{pre-image}.

• \text{Important:}

 the formula defines \text{a sequence of BDD operations} and therefore is considered as a \text{symbolic algorithm}.
Model Checking \(f = E[g_1 \cup g_2] \)

Given: BDDs \(R(V, V') \), \(g_1(V) \) and \(g_2(V) \):

procedure \(\text{CheckEU} \ (g_1, g_2) \)

\[
Q := \text{emptyset}; \quad Q' := g_2; \\
\text{while } Q \neq Q' \text{ do} \\
\quad Q := Q'; \\
\quad Q' := Q \lor (\text{EX}(Q) \land g_1) \\
\text{end while} \\
f := Q; \quad \text{return}(f)
\]
Model Checking \(f = EG\ g \)

Given: BDDs \(R(V, V') \), \(g(V) \)

procedure \(\text{CheckEG} (g) \)

\[
\begin{align*}
Q &:= S ; \quad Q' := g ; \\
\text{while} \ Q \neq Q' \ \text{do} \\
&\quad Q := Q' ; \\
&\quad Q' := Q \land \text{EX} (Q) \\
\text{end while} \\
\text{return}(f)
\end{align*}
\]
Example: \(f = EG g \)
Bounded (SAT-based) Model Checking
State explosion problem - revisited

• state of the art symbolic model checking can handle effectively designs with a few hundreds of Boolean variables

Other solutions for the state explosion problem are needed!
SAT-based model checking

• Translates the model and the specification to a propositional formula
• Uses efficient tools (SAT solvers) for solving the satisfiability problem

Since the satisfiability problem is NP-complete, SAT solvers are based on heuristics.
Main idea

- **Translate** the model and the specification to propositional formulas

- **Use efficient tools** *(SAT solvers)* for solving the satisfiability problem
SAT tools

• Using heuristics, SAT tools can solve very large problems fast.
• They can handle systems with 1000 variables that create formulas with a few millions of variables.

GRASP (Silva, Sakallah)
Prover (Stalmark)
Chaff (Malik)
MiniSAT
Glucose
Bounded model checking (BMC) for checking AGp

- Given
 - A finite system M
 - A safety property AGp
 - A bound k

- Determine
 - Does M contain a counterexample to AGp of k transitions (or fewer)?

Bounded Model Checking (BMC) for checking $AG\neg p$

• **Unwind** the model for k levels, i.e., construct all computations of length k

• If a state satisfying $\neg p$ is encountered, produce a counterexample; Otherwise, **increase k**

[BCCZ 99]
Bounded Model Checking

Terminates
• with a counterexample or
• with time- or memory-out

The method is suitable for falsification, not verification
BMC for checking AGp (EF\neg p)

Input to BMC:
A system over variables \(V = \{v_1, \ldots, v_n\} \), where
- \(\text{INIT}(V) \) is a propositional formula representing the set of initial states
- \(R(V,V') \) is a propositional formula representing the transition relation

A specification:
- \(\neg p(V) \) is a propositional formula representing the set of states satisfying \(\neg p \)
BMC for checking $\varphi = EF \neg p$

1. $k=1$

2. Build a propositional formula f_{M}^{k} describing all prefixes of length k of paths of M from an initial state

3. Build a propositional formula f_{φ}^{k} describing all prefixes of length k of paths satisfying φ

4. If $(f_{M}^{k} \land f_{\varphi}^{k})$ is satisfiable, return the satisfying assignment as a counterexample

5. Otherwise, increase k and return to 2.
• If \((f_M^k \land f_\varphi^k)\) is unsatisfiable: M has no counterexample of length k

• If \(k = 2^{|V|}\) then we can conclude \(M \models AG\varphi\)
 - Too big - not practical

• The method is suitable for refutation
 - Bug finding
BMC for checking $\varphi = \text{EF} \neg p$

- $f_{M}^{k}(V_0, ..., V_k) =$
 $\text{INIT}(V_0) \land R(V_0, V_1) \land ... \land R(V_{k-1}, V_k)$

- Uses $k+1$ copies of $V = \{ v_1, ..., v_n \}$
- V_i represents the state after i transitions
BMC for checking $\varphi = EF \neg p$

- To check if p is violated within k steps:

$$f_{\varphi}^k (V_0, \ldots, V_k) = \neg p(V_0) \lor \ldots \lor \neg p(V_k) = V_{i=0}^{i=k} \neg p(V_i)$$

- To check if p is violated exactly on state k:

$$f_{\varphi}^k (V_0, \ldots, V_k) = \neg p(V_k)$$
 - Useful when working iteratively on $k=0,1,2,\ldots$
BMC for checking $\phi = \text{EF} \neg p$

- The iterative algorithm:

\[
\begin{align*}
\text{INIT}(V_0) \land \neg p(V_0) \\
\text{INIT}(V_0) \land R(V_0, V_1) \land \neg p(V_1) \\
\text{INIT}(V_0) \land R(V_0, V_1) \land R(V_1, V_2) \land \neg p(V_2) \\
\ldots \\
\ldots \\
\ldots \\
\text{INIT}(V_0) \land R(V_0, V_1) \land R(V_1, V_2) \land \ldots \land R(V_{k-1}, V_k) \land \neg p(V_k)
\end{align*}
\]
Example – shift register

Shift register of 3 bits: \(<x, y, z>\)

Transition relation:
\[R(x, y, z, x', y', z') = x' = y \land y' = z \land z' = 1 \]

Initial condition:
\[INIT(x, y, z) = x = 0 \lor y = 0 \lor z = 0 \]

Specification: \(AG (x = 0 \lor y = 0 \lor z = 0) \)
Propositional formula for k=2

\[f_{M,2} = (x_0=0 \lor y_0=0 \lor z_0=0) \land \\
(x_1=y_0 \land y_1=z_0 \land z_1=1) \land \\
(x_2=y_1 \land y_2=z_1 \land z_2=1) \]

\[f_{\varphi,2} = \bigvee_{i=0}^{2} (x_i=1 \land y_i=1 \land z_i=1) \]

Satisfying assignment: 101 011 111

This is a counterexample!
BMC for checking $\text{AFp} (\varphi=\text{EG}\lnot p)$

- Is there an infinite path in M
 - From an initial state
 - all of its states satisfying $\lnot p$
 - Over $k+1$ states?

- Must be a lasso
BMC for checking AFp \((\varphi=\text{EG}\neg p)\)

An infinite path in \(M\), from an initial state, over \(k+1\) states, all satisfying \(\neg p\):

- \(f^k_M (V_0, \ldots, V_k) =\)
 \[
 \text{INIT}(V_0) \land \bigwedge_{i=0, \ldots, k-1} R(V_i, V_{i+1}) \land V_{i=0, \ldots, k-1} (V_k=V_i)
 \]

- \(V_k=V_i\) means bitwise equality: \(\bigwedge_{j=0, \ldots, n} (v_{kj} \leftrightarrow v_{ij})\)

- \(f^k_\varphi (V_0, \ldots, V_k) = \bigwedge_{i=0, \ldots, k} \neg p (V_i)\)
A remark

In order to describe a computation of length k by a propositional formula we need $k+1$ copies of the state variables. With BDDs we use only two copies of current and next states.
Bounded model checking

• Can handle all of **LTL** formulas
• Can be used for **verification** by choosing \(k \) which is large enough
 - Need bound on length of the shortest counterexample.
 • *diameter* bound. The diameter is the maximum length of the shortest path between any two states.
• Using such \(k \) is often **not practical** due to the size of the model
 • Computing worst case diameter is exponential. Obtaining better bounds is sometimes possible, but generally intractable.
SAT-based verification

- Induction
- Interpolation
- IC3