Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 1
Why (formal) Verification?

• Safety-critical applications:
 - Air-traffic controllers
 - Medical equipment
 - Cars

Bugs are unacceptable!

• Bugs found in later stages of design are expensive, e.g. Intel’s Pentium bug in floating-point division

• Testing does not provide full coverage
The goal of the course:
Formal Verification

Given
• A (model of) hardware or software system and
• a formal specification

does the system satisfy the specification?

Not decidable!
Formal Verification

Solutions:

• “Program correctness”:
 Provide non-automated verification methods

• “Automatic verification / Model Checking”:
 restrict the problem to a decidable one:
 - Finite-state reactive systems
 - Propositional temporal logics
Specifications

• Should be given for a system by the designer, developer, programmer, user

• Examples:
 - Does the program always terminate?
 - Does the program compute correctly multiplication of its inputs?
Specifications

• Additional examples:
 - When we press a sequence of buttons on the control panel of an airplane / microwave - do we get the desired result?
 - When we deposit money - does it get to our account?
 - Can a user access data only if he has the appropriate authorization?
Verification tools

Are developed and used in

• **Hardware industry:** Intel, IBM, Cadence, Mellanox, ...

• **Software industry:** Microsoft, NASA, Amazon, Facebook...

• **Universities**
Part 1 of the course

Program Correctness

- Non-automated
- Verifies program with possibly infinite number of states
- Refers to the programs as input-output transformation
Ingredients for Formal Verification

1. Specification language
 • With formal semantics

2. Programming language
 • with formal semantics

3. Proof rules
 • For proving “Program P has the property φ”
Requirements from the proof rules

- **Soundness of the rules:** if we were able to prove correctness of program P w.r.t. specification ϕ using the proof rules, then P is correct w.r.t. ϕ

- **Completeness of the rules:** if P is correct w.r.t. specification ϕ, then our proof rules *can* prove it
We handle:

• **Deterministic programs**
 – Exactly **one computation for every input**
 – At most **one output for each input**

• **Properties**
 – Partial correctness
 – Termination
 – Total Correctness
Some notations

• Program variables: $\bar{x} = (x_1, \ldots, x_n)$

• A state of the program σ is a function from program variables to their domains

• The set of program states is defined by: $D_1 \times \ldots \times D_n \cup \{\bot\}$
 Where D_i is the domain of variable x_i
Program states: Examples

- A program with integer variable x, Boolean variable b
 - States: $(5, F), (-17, T)$

- Elevator on 3 floors:
 - $\text{elev_at} \in \{1, 2, 3\}$
 - $\text{on_floor1, on_floor2, on_floor3}$: Boolean
 - $\text{in_elev1, in_elev2, in_elev3}$: Boolean
 - $\text{direction} \in \{\text{up, down}\}$, $\text{door} \in \{\text{open, close}\}$
 - State: $(2, F,T,T, T,T,F, \text{up, close})$
Defining the Specification

Specification is a pair $<q_1(\bar{x}), q_2(\bar{x})>$ where:

- $q_1(\bar{x}), q_2(\bar{x})$ are first order formulas over program variables

- $q_1(\bar{x})$ describes a condition holding before the execution of the program

- $q_2(\bar{x})$ describes a condition holding at the end of the execution of the program
Examples

Specification example

• \(< (x \geq 0 \land y > 0), (z = x/y \land z \geq 0) > \)

A program with \(x \in \mathbb{N}, y \in \mathbb{R}, b \in \{T, F\} \)

States: \((5, 5.0, T), (7, 3.111, F) \)

\(q_1(x, y, b) = x > 0 \land b \)

\(q_2(x, y, b) = x+y > 0 \land \neg b \)
Computations of Programs

- $\pi(P, \sigma)$ denotes a computation of program P from state σ
- $\pi(P, \sigma)$ is a finite $(\sigma_1, \ldots, \sigma_k)$ or infinite $(\sigma_1, \sigma_2, \ldots)$ sequence of states where:
 - $\sigma_1 = \sigma$
 - σ_{i+1} is a result of applying an action from the program on σ_i
- This definition is not a full definition
More notations

• \bot - bottom: the undefined value

• $\text{val}(\pi)$ denotes the final state of computation π (if exists)

 – $\text{val}(\pi) = \sigma_k$ if $\pi = (\sigma_1, \ldots, \sigma_k)$

 – $\text{val}(\pi) = \bot$ if $\pi = (\sigma_1, \sigma_2, \ldots)$

 • π is an infinite computation

• $\sigma \models q(\overline{x})$ if $q(\overline{x})$ is true when free variables in q are replaced with matching values in σ
• Important remark:
\[\bot \not\models q(\overline{x}) \text{ for every } q(\overline{x}) \text{ (even } \bot \not\models \text{ true)} \]

• Example of formulas and their meaning:
\[q(y) = \forall x (y \mid x \lor 2 \mid x) \quad \text{where } x, y \text{ are naturals} \]

 – For a state \(\sigma(x) = 1, \sigma(y) = 2, \sigma(z) = 1 \)
 \[\sigma \models q(y) \text{ since } \forall x (2 \mid x \lor 2 \mid x) \text{ is true} \]
Partial Correctness

• A program P is partially correct with respect to specification $<q_1(\overline{x}), q_2(\overline{x})>$ iff for every computation π of P from an initial point of P, and for every state σ_0:

 if

 – the computation starts from state σ_0 which satisfies $q_1(\overline{x})$ and
 – the computation terminates

 then

 – $q_2(\overline{x})$ holds at the end of the computation
Partial Correctness

• For every computation \(\pi \) and every state \(\sigma_0 \):

\[
(\sigma_0 \models q_1(\bar{x}) \text{ and } \text{val}(\pi(P, \sigma_0)) \neq \bot) \implies \text{val}(\pi(P, \sigma_0)) \models q_2(\bar{x})
\]

• Notation: \(\{q_1\}P\{q_2\} \)
Total Correctness

• A program P is **totally correct** with respect to specification $<q_1(\overline{x}), q_2(\overline{x})>$ iff for every computation π of P from an initial point of P, and for every state σ_0:

 if

 – the computation starts from state σ_0 which satisfies $q_1(\overline{x})$

 then

 – the computation terminates, and

 – $q_2(\overline{x})$ holds at the end of the computation
Total Correctness

• For every computation π and every state σ_0:

$\sigma_0 \models q_1(\overline{x}) \Rightarrow \text{val}(\pi(P, \sigma_0)) \neq \bot \text{ and } \text{val}(\pi(P, \sigma_0)) \models q_2(\overline{x})$

• Notation: $<q_1>P<q_2>$
How do we write the specification:

“P terminates if the initial state satisfies q_1”
Separation Lemma

• For every program P and specification $<q_1, q_2>$:

$$\vdash <q_1> P <q_2>$$

if and only if

$$\vdash \{q_1\} P \{q_2\} \text{ and } \vdash <q_1> P <\text{true}>$$
Examples

• Which programs satisfy \{true\}P\{false\}?

• Which programs satisfy \langle true \rangle P \langle false \rangle ?
Logical Variables in Specifications

Example 1:
Specify a program with a single variable x whose value at the end of the computation is twice its value at the beginning.
Logical Variables in Specifications

Solution: add fresh variables which are
- not part of the program and therefore
- their value does not change during the execution of the program

These variables are called logical variables

Convention: We use logical variable X to preserve the value of variable x
Logical Variables in Specifications

Example 2:
Program which returns in variable z the multiplication of variables x and y

Convection:
Assertions q_1, q_2 are now defined over \bar{x} that includes program variables as well as logical variables