Lecture 6
Explicit Model Checking for CTL
Model Checking \([CE81, QS82]\)

An efficient procedure that receives:

- A finite-state model describing a system
- A temporal logic formula describing a property

It returns

yes, if the system has the property

no + Counterexample, otherwise
CTL Model Checking $M \models f$

- **Goal:** For each s, computes $\text{label}(s)$, which is the set of subformulas of f, true in s

- The Model Checking algorithm works *iteratively* on subformulas of f, from *simpler* subformulas to more *complex* ones

- For checking $\text{AG}(\text{request} \Rightarrow \text{AF grant})$
 - Check grant, request
 - Then check AF grant
 - Next check $\text{request} \Rightarrow \text{AF grant}$
 - Finally check $\text{AG}(\text{request} \Rightarrow \text{AF grant})$
Model Checking $M \models f$ (cont.)

- We check subformula g of f only after all subformulas of g have already been checked

- For subformula g, the algorithm adds g to label(s) for every state s that satisfies g

- When we finish checking g, the following holds:
 - $g \in \text{label}(s) \iff M,s \models g$
Model Checking $M \models f$ (cont.)

Alternative description
Denote $S_g = \{ s \mid M, s \models g \}$

- The goal of model checking is to compute S_g for each subformula g of f
 - In particular, S_f
Model Checking $M \models f$ (cont.)

- $M \models f$ if and only if $f \in \text{labels}(s)$ for all initial states s of M

- $M \models f$ if and only if $S_0 \subseteq S_f$

- The algorithm has time complexity: $O(|M| \times |f|)$
Model Checking Atomic Propositions

- For atomic proposition $p \in AP$:
 $p \in \text{label}(s) \iff p \in L(s)$

 Held by alg Defined by M

How do we handle more complex formulas?

Observation:
- Sufficient to handle $\neg, \lor, \text{EX}, \text{EU}, \text{EG}$
Model Checking \neg, \lor formulas

$\neg f_1$: add to label(s) if and only if $f_1 \notin \text{labels}(s)$

$f_1 \lor f_2$: add to label(s) if and only if

$\quad f_1 \in \text{labels}(s)$ or $f_2 \in \text{labels}(s)$
Model Checking \(g = \text{EX} \ f_1 \)

add \(g \) to label(s) if and only if \(s \) has a successor \(t \) such that \(f_1 \in \text{labels}(t) \)

procedure `CheckEX (f_1)`

\[
T := \{ t \mid f_1 \in \text{label}(t) \}
\]

while \(T \neq \emptyset \) do

choose \(t \in T \); \(T := T \setminus \{t\} \);

for all \(s \) s.t. \(R(s,t) \) do

if \(\text{EX} \ f_1 \notin \text{label}(s) \) then

\[
\text{label}(s) := \text{label}(s) \cup \{ \text{EX} \ f_1 \};
\]

end for all

end while
Model Checking $g = E(f_1 \cup f_2)$

procedure $\text{CheckEU}(f_1, f_2)$

\[T := \{ s \mid f_2 \in \text{label}(s) \} \]

For all $s \in T$ do

\[\text{label}(s) := \text{label}(s) \cup \{ E(f_1 \cup f_2) \} \]

while $T \neq \emptyset$ do

choose $s \in T$; $T := T \setminus \{s\}$;

for all t s.t. $R(t,s)$ do

if $E(f_1 \cup f_2) \notin \text{label}(t)$ and $f_1 \in \text{label}(t)$ then

\[\text{label}(t) := \text{label}(t) \cup \{ E(f_1 \cup f_2) \}; \]

\[T := T \cup \{t\} \]

end for all

end while

Do not add a state to T more than once.
Example $g = E(f_1 U f_2)$
• How shall we handle $g = EF f_1$?

Remarks:
We transform a logical question of $M,s \vDash f$ to a graph traversal algorithm

The algorithm is guaranteed to terminate
Model Checking $g = EG f_1$

$s = EG f_1$

iff

There is a path π, starting at s, such that $\pi \models G f_1$

iff

There is a path from s to a strongly connected component, where all states satisfy f_1
Model Checking $g = EG \ f_1$

- A Strongly Connected Component (SCC) in a graph is a subgraph C s.t. every node in C is reachable from any other node in C via nodes in C

- An SCC C is maximal (MSCC) if it is not contained in any other SCC in the graph
- C is nontrivial if it contains at least one edge. Otherwise, it is trivial

Tarjan has a linear algorithm in $O(|S|+|R|)$ for finding all MSCCs in a graph, including the trivial SCCs.
Model Checking $g = \text{EG } f_1$

Why using maximal SCCs?

Complexity concerns:

There are up to $2^{|S|}$ non-maximal SCCs in M

Number of maximal SCCs is at most $|S|$

• Disjoint
• Overall number of states is $|S|$
Model Checking $g = \text{EG} f_1$

Reduced structure for M and f_1:
Remove from M all states s.t. $f_1 \notin \text{label}(s)$

Resulting model: $M' = (S', R', L')$
- $S' = \{ s \mid M, s \models f_1 \}$
- $R' = (S' \times S') \cap R$
- $L'(s') = L(s')$ for every $s' \in S'$

Theorem: $M, s \models \text{EG} f_1$ iff
1. $s \in S'$ and
2. There is a path in M' from s to some state in a nontrivial maximal strongly connected component of M'
Model Checking $g = EG f_1$

procedure $\text{CheckEG} \ (f_1)$

$S' := \{ s \mid f_1 \in \text{label}(s) \}$

$\text{MSCC} := \{ C \mid C \text{ is a nontrivial MSCC of } M' \}$

$T := \bigcup_{C \in \text{MSCC}} \{ s \mid s \in C \}$

For all $s \in T$ do $\text{label}(s) := \text{label}(s) \cup \{ EG \ f_1 \}$

while $T \neq \emptyset$ do

choose $s \in T$; $T := T \setminus \{s\}$

for all $t \in S'$ s.t. $R(t,s)$ do

if $EG \ f_1 \notin \text{label}(t)$ then

$\text{label}(t) := \text{label}(t) \cup \{ EG \ f_1 \}$;

$T := T \cup \{t\}$

end for all

end while
Complexity for EG f_1

- Computing M': $O(|S| + |R|)$
- Computing MSCCs using Tarjan’s algorithm: $O(|S'| + |R'|)$
- Labeling all states in MSCCs: $O(|S'|)$
- Backward traversal: $O(|S'| + |R'|)$

Overall: $O(|S| + |R|) = O(M)$
Theorem: $M,s \models EG f_1$ iff

1. $s \in S'$ and

2. There is a path in M' from s to some state in a nontrivial maximal strongly connected component of M'

Proof: