Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 11

- CBMC
- Efficient SAT solvers
CBMC: C Bounded Model Checker
Bounded Model Checking of C programs

Developed by Daniel Kroening

Based on slides by
Arie Gurfinkel
A (very) simple example (1)

Program

```c
int x;
int y=8,z=0,w=0;
if (x)
   z = y - 1;
else
   w = y + 1;
assert (z == 7 ||
   w == 9)
```

Constraints

```c
y = 8,
z = x ? y - 1 : 0,
w = x ? 0 : y + 1,
z != 7,
w != 9
```

UNSAT
no counterexample
assertion always holds!
A (very) simple example (2)

Program

```c
int x;
int y=8,z=0,w=0;
if (x)
    z = y - 1;
else
    w = y + 1;
assert (z == 5 || w == 9)
```

Constraints

```plaintext
y = 8,
z = x ? y - 1 : 0,
w = x ? 0 : y + 1,
z != 5,
w != 9
```

SAT counterexample found!

```plaintext
y = 8, x = 1, w = 0, z = 7
```
How does CBMC work

Transform a program into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample
CBMC: Bounded Model Checker for C
A tool by D. Kroening/Oxford

C Program

Parser -> Static Analysis

goto-program

SAFE

SAT solver

UNSAT

CNF

equations

CEX-gen

UNSAFE + CEX

CBMC
Example: Sufficient Loop Unwinding

void f(...) {
 j = 1
 while (j <= 2)
 j = j + 1;
 Remainder;
}

unwinding = 3

assert(!(j <= 2))
unwinding assertion
Example: Insufficient Loop Unwinding

```c
void f(...) {
    j = 1
    while (j <= 10)
        j = j + 1;
    Remainder;
}

unwind = 3
```

```c
void f(...) {
    j = 1
    if(j <= 10) {
        j = j + 1;
        if(j <= 10) {
            j = j + 1;
            assert(!(j <= 10));
        }
    }
    Remainder;
}
```
Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times, use a new variable for the LHS of each assignment.

Program
\[
\begin{align*}
x &= x + y; \\
x &= x \times 2; \\
a[i] &= 100;
\end{align*}
\]

SSA Program
\[
\begin{align*}
x_1 &= x_0 + y_0; \\
x_2 &= x_1 \times 2; \\
a_1[i_0] &= 100;
\end{align*}
\]

Single Static Assignment (SSA)
What about conditionals?

Program

```java
if (v)
    x = y;
else
    x = z;
w = x;
```

SSA Program

```java
if (v0)
    x1 = y0;
else
    x2 = z0;
x3 = v0 ? x1 : x2;
w1 = x3;
```

For each join point, add new variables with selectors
Example

int main() {
 int x, y;
 y = 8;
 if (x)
 y--;
 else
 y++;
 assert
 (y == 7 ||
 y == 9);
}

int main() {
 int x, y;
 y1 = 8;
 if (x0)
 y2 = y1 - 1;
 else
 y3 = y1 + 1;
 y4 = x0 ? y2 : y3;
 assert
 (y4 == 7 ||
 y4 == 9);
}

(y1 = 8
∧ y2 = y1 - 1
∧ y3 = y1 + 1
∧ y4 = x0 ? y2 : y3)
⇒ (y4=7 ∨ y4=9)
valid?
Example

int main() {
 int x, y;
 y=8;
 if(x)
 y--;
 else
 y++;
 assert
 (y==7 ||
 y==9);
}

int main() {
 int x, y;
 y1=8;
 if(x0)
 y2=y1-1;
 else
 y3=y1+1;
 y4 = x0 ? y2 : y3;
 assert
 (y4==7 ||
 y4==9);
}

(y_1 = 8
 ^ y_2 = y_1 - 1
 ^ y_3 = y_1 + 1
 ^ y_4 = x_0 ? y_2 : y_3)
 ^ ~(y_4=7 v y_4=9)

Unsat?
From Programming to Modeling

Extend C programming language with 3 modeling features

Assertions
• assert(e) - aborts an execution when e is false, no-op otherwise

Non-determinism
• nondet_int() - returns a non-deterministic integer value

Assumptions
• assume(e) - “ignores” execution when e is false, no-op otherwise
Assume-Guarantee Reasoning (1)

Is sort correct?

Check by splitting on the arguments of sort

```c
void sort (int* p, int n) { ... }
void main(void) {
    ...
    sort(a1, 10);
    ...
    sort(a2, 7);
    ...
}
```
Assume-Guarantee Reasoning (2)

(Assume) Is sort correct assuming \(p \) is not NULL?

```c
void sort (int* p, int n) {
    assume(p!=NULL);
    ...
    /* sort code */
    assert(sorted(p,n));
}
```
(Guarantee) Is sort guaranteed to be called with a non-NULL argument?

```c
void main(void) {
    ... assert (a1!=NULL); // sort(a1,10)
    for (c = 0; c < 10; c++)
        a1[c] = nondet_int();
    assume(sorted(a1,10));
    ...
    assert (a2!=NULL); // sort(a2,7);
    for (c = 0; c < 7; c++)
        a2[c] = nondet_int();
    assume(sorted(a2,7));
    ...}
```
Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

This program is passed by CBMC!

```c
if (x > 0) {
    assume (x < 0);
    x = -2;
    assert (x!=-2);
}
```

Assume must either be checked with `assert` or used as an environmental restriction:

```c
x = nondet_int ();
y = nondet_int ();
assume (x < y);
```
How does CBMC work

Transform a program into a set of equations
1. Simplify control flow
2. Unwind all of the loops
3. Convert into Single Static Assignment (SSA)
4. Convert into equations
5. Bit-blast
6. Solve with a SAT Solver
7. Convert SAT assignment into a counterexample
Efficient SAT solvers
The SAT Problem

• Given a propositional formula \(\varphi(\bar{v}) \), is there a satisfying assignment \(A \) for \(\bar{v} \)

• An assignment is a function from \(\bar{v} \) to \{true, false\}

• \(A \) is a satisfying assignment if \(\varphi(A(\bar{v})) = true \)

• \(A \) is called a solution for \(\varphi(\bar{v}) \)

• A partial assignment assigns a subset of \(\bar{v} \)
CNF representation of $\varphi(\overline{v})$

- $\varphi(\overline{v})$ is a conjunction of clauses: $\varphi(\overline{v}) = cl_1 \land cl_2 \land \ldots \land cl_n$
- A clause is a disjunction of literals: $cl_i= (lit_1 \lor \ldots \lor lit_i)$
- A literal is an atomic proposition or its negation

- Example:
 $(a \lor c) \land (b \lor c) \land (\neg a \lor \neg b \lor d)$

- A satisfies $\varphi(\overline{v})$ iff A satisfies all its clauses
• Example:

\[(a \lor c) \land (b \lor c) \land (\neg a \lor \neg b \lor d)\]

• Satisfying assignments:

 - \(A_1 = (a=true, b=true, d=true, c=false)\)

 - \(A_2 = (c=true, a=false, b=true, d=false)\)

• CNF formulas

 - Clause does not contain \(a\), \(\neg a\)

 - No repetition of literals in clause

• CNF formulas can be represented as a set of sets of literals
Searching for a satisfying assignment

• Inefficient way:
 check each one of the 2^n assignments
 where $|\bar{v}| = n$

• The basis for efficient SAT solving:
 Davis, Putnam, Logeman, Loveland (DPLL)
 1960, 1962
First idea: Unit Clause

Given
• a propositional formula $\varphi(\overline{v})$, and
• a partial assignment A

A Unit Clause is a clause with
- exactly one unassigned literal, while
- all other literals are false

• Asserts the value of the unassigned variable

\[
\begin{align*}
a &= ? \\
b &= 1 \\
d &= 0 \\
\end{align*}
\]

\[
cl = (a \lor \neg b \lor d) \implies a = 1
\]

• $a=1$ is implied by $b=1$ and $d=0$
Boolean Constraint Propagation (BCP)

• **BCP**: For \(\varphi(v) \) and a partial assignment \(A \), computes all possible implications
 - Based on unit clauses

• **Conflict**: a variable gets both 0 and 1 under \(A \)
1. Start with an empty partial assignment A

2. If A is complete (no new decision to make), return (SAT, A)

3. Otherwise, extend A with a decision: $D=(\text{variable}, \text{value})$

4. BCP: extend A with all implications of D

5. If (no conflict) go to 2

6. If (conflict), apply backtracking:
 - Flip decision D: Remove (v, b), extend A with $(v, \neg b)$
 - Undo all implications from $D=(v, b)$ and from flips made after D
 - Return to 4

7. If no decision to flip, return UNSAT
DPLL algorithm

- **Termination**
 - No unassigned variable - **SAT**
 - No decision variable to flip - **UNSAT**
\[(-b \lor c) \land (-a \lor \neg d) \land (a \lor b \lor \neg c) \land (-a \lor d) \land (a \lor \neg c \lor \neg e) \]

Decision 1: \(b = 1 \)
BCP: \(c = 1 \)

\[[\quad] \land (-a \lor \neg d) \land [\quad] \land (-a \lor d) \land (a \lor \neg c \lor \neg e) \]

Decision 2: \(a = 1 \)
BCP: \(d = 0 \)
\(d = 1 \)

Conflict! -Backtrack
\((\neg b \lor c) \land (\neg a \lor \neg d) \land (a \lor b \lor \neg c) \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e)\)

Decision 1: \(b = 1\)

BCP: \(c = 1\)

\[
\left[\right] \land (\neg a \lor \neg d) \land \left[\right] \land (\neg a \lor d) \land (a \lor \neg c \lor \neg e)
\]

Decision 2: \(a = 0\)
Decision 1: \(b = 1 \)
BCP: \(c = 1 \)

Decision 2: \(a = 0 \)
BCP: \(e = 0 \)

Partial satisfying assignment:
\(b = 1, c = 1, a = 0, e = 0 \)
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry