Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 13

16.1.18
Other solutions to the state-explosion problem

Small models replace the full, concrete model:

• Abstraction
• Compositional verification
• Partial order reduction
• Symmetry
Abstraction preserving ACTL/ACTL*

We use **Existential Abstraction** in which the abstract model is an **over-approximation** of the concrete model:

- The abstract model has **more behaviors**
- But no concrete behavior is lost

- Every ACTL/ACTL* property true in the abstract model is also true in the concrete model
Existential Abstraction

Given an abstraction function $h : S \rightarrow S_h$, the concrete states are grouped and mapped into abstract states:

$M \leq M_h$
How to define an abstract model:

Given M and φ, choose

- S_h - a set of abstract states
- AP - a set of atomic propositions that label concrete and abstract states
- $h : S \rightarrow S_h$ - a mapping from S on S_h that satisfies:

 \[h(s) = h(t) \text{ only if } L(s) = L(t) \]

- h is called appropriate w.r.t. AP
The abstract model
\[M_h = (S_h, I_h, R_h, L_h) \]

- \(s_h \in I_h \iff \exists s \in I : h(s) = s_h \)
- \((s_h, t_h) \in R_h \iff \exists s, t \ [h(s) = s_h \land h(t) = t_h \land (s, t) \in R] \)
- \(L_h(s_h) = L(s) \) for some \(s \) where \(h(s) = s_h \)

This is an exact abstraction
An approximated abstraction
(an approximation)

- \(s_h \in I_h \iff \exists s \in I : h(s) = s_h \)

- \((s_h, t_h) \in R_h \iff \exists s, t \ [h(s) = s_h \land h(t) = t_h \land (s, t) \in R] \)

- \(L_h \) is as before

Notation:
\(M_r \) - reduced (exact) \hspace{1cm} \(M_h \) - approximated
Depending on h and the size of M, M_h (i.e. I_h, R_h) can be built using:

- BDDs or
- SAT solver or
- Theorem prover (SMT)

We later demonstrate such constructions for specific types of abstractions.
Predicate Abstraction

• Given a program over variables V
• Predicate P_i is a first-order atomic formula over V
 Examples: $x+y < z^2$, $x=5$

• Choose: $AP = \{ P_1, \ldots, P_k \}$ that includes
 - the atomic formulas in the property ϕ and
 - conditions in if, while statements of the program
Predicate Abstraction - Example

while \((x \leq 1)\) {

......

if \((y = 2)\) {

.... }

......

}

\[\varphi = AFG(x > y)\]

\[AP = \{x > y, x \leq 1, y = 2\}\]
Predicate Abstraction

- Labeling of concrete states:

\[L(s) = \{ P_i \mid s \models P_i \} \]
Example (concrete model)

Program over natural variables x, y

$S = \mathbb{N} \times \mathbb{N}$

$AP = \{ P_1, P_2, P_3 \}$ where

$P_1 = x \leq 1$, $P_2 = x > y$, $P_3 = y = 2$

$AP = \{ x \leq 1, x > y, y = 2 \}$

$L((0,0)) = L((1,1)) = L((0,1)) = \{ P_1 \}$

$L((0,2)) = L((1,2)) = \{ P_1, P_3 \}$

$L((2,3)) = \emptyset$
Abstract model - Definition

• Abstract states are defined over Boolean variables \(\{ B_1, \ldots, B_k \} \):
 \(S_h \subseteq \{ 0, 1 \}^k \)

• \(h(s) = s_h \iff \forall 1 \leq j \leq k : [s = P_j \iff s_h = B_j] \)

• \(L_h(s_h) = \{ P_j | s_h = B_j \} \)

• Is \(h \) appropriate for AP?
Example (concrete model)

Program over natural variables x, y

$S = \mathbb{N} \times \mathbb{N}$

$AP = \{ P_1, P_2, P_3 \}$ where

$P_1 = x \leq 1$, $P_2 = x > y$, $P_3 = y = 2$

$AP = \{ x \leq 1, x > y, y = 2 \}$

$L((0,0)) = L((1,1)) = L(0,1)) = \{ P_1 \}$

$L((0,2)) = L((1,2)) = \{ P_1, P_3 \}$

$L((2,3)) = \emptyset$
Example - (abstract model)

\[\text{AP} = \{ P_1 = (x \leq 1), P_2 = (x > y), P_3 = (y = 2) \} \]

\[S_h \subseteq \{ 0,1 \}^3 \]

\[h((0,0)) = h((1,1)) = h(0,1)) = (1,0,0) \]
\[h((0,2)) = h((1,2)) = (1,0,1) \]

No concrete state is mapped to (1,1,1)

\[L_h((1,0,0)) = \{ P_1 \} \]
\[L_h((1,0,1)) = \{ P_1, P_3 \} \]

The concrete state and its abstract state are labeled identically
Computing R_h (same example)

$\left(s_h, t_h \right) \in R_h \iff \exists s, t \left[h(s) = s_h \land h(t) = t_h \land (s, t) \in R \right]$
Computing R_h (same example)

Program with one statement: $x := x+1$

$(b_1, b_2, b_3), (b'_1, b'_2, b'_3) \in R_h \iff$

$$\exists xyx'y' \left[\begin{array}{l}
P_1(x, y) \iff b_1 \land \\
P_2(x, y) \iff b_2 \land \\
P_3(x, y) \iff b_3 \land \\
x' = x + 1 \land y' = y \land \\
P_1(x', y') \iff b'_1 \land \\
P_2(x', y') \iff b'_2 \land \\
P_3(x', y') \iff b'_3 \end{array} \right]$$

$h(s) = s_h$

$h(t) = t_h$

$R(s, t)$
Depending on \(h \) and the size of \(M \), \(M_h \) (I.e. \(I_h, R_h \)) can be built using:

- **BDDs**, if \(S \) is finite and not too big
- **SAT solver**, if \(S \) is finite and possibly big
- **Theorem prover (SMT)**, \(S \) might be infinite
Logic preservation Theorem

- **Theorem** If φ is an ACTL/ACTL* specification over AP, then

 $M_h \models \varphi \Rightarrow M \models \varphi$

- However, the reverse may not be valid.
Traffic Light Example

Property:
\(\varphi = AG AF \neg (\text{state}=\text{red}) \)

Abstraction function \(h \) maps green, yellow to go.

\[M \models \varphi \iff M_h \models \varphi \]
Traffic Light Example (Cont)

If the abstract model invalidates a specification, the actual model may still satisfy the specification.

- Property:
 \(\varphi = \text{AG AF (state=red)} \)

- \(M |\varphi \) but \(M_h \nmid \varphi \)

- Spurious Counterexample:
 \(\langle \text{red, go, go, ...} \rangle \)
CounterExample-Guided Abstraction-Refinement (CEGAR)
The CEGAR Methodology

1. **M and \(\varphi \)**
2. **generate initial abstraction**
3. **model check**
4. **if \(M_h \models \varphi \)**
5. **stop**
6. **if \(M_h \not\models \varphi \)**
7. **refinement: generate new abstraction**
8. **generate counterexample \(T_h \)**
9. **check spurious counterexample**
10. **if \(T_h \) is spurious**
11. **if \(T_h \) is not spurious**
Generating the Initial Abstraction

- If we use **predicate abstraction** then predicates are extracted from the program’s **control flow** and the **checked property**

- If we use **localization reduction** then the un-abstracted variables are those appearing in the predicates above
Predicate Abstraction - Example

while (true) {
 if (reset == 1) { x=y=0; }
 else if (x<y) { x=x+1; }
 else if (x==y && !(y==2)) { y=y+1; }
 else if (x==y) { x=y=0; }
}

\(\varphi = AF(x==y) \)

\[AP = \{ \text{reset==1, x<y, x==y, y==2} \} \]
Model Check The Abstract Model

Given the abstract model M_h

- If $M_h \models \phi$, then the model checker generates a counterexample trace (T_h)
- Most current model checkers generate paths or loops
- Question: is T_h spurious?
Counterexamples

- For AGp it is a path to a state satisfying $\neg p$
- For AFp it is an infinite path represented by a path+loop, where all states satisfy $\neg p$

On the other hand

- For EFp we need to return the whole computation tree (the whole model)

- For $AX(AGp \lor AGq)$ we need to return a computation tree demonstrating $EX(EF\neg p \land EF\neg q)$
Assume that we have four abstract states
\{1,2,3\} \leftrightarrow \alpha \quad \{4,5,6\} \leftrightarrow \beta
\{7,8,9\} \leftrightarrow \gamma \quad \{10,11,12\} \leftrightarrow \delta

Abstract counterexample \(T_h = \langle \alpha, \beta, \gamma, \delta \rangle \)

\(T_h \) is not spurious, therefore, \(M \models \varphi \)
Spurious Path Counterexample

The concrete states mapped to the failure state are partitioned into 3 sets:

<table>
<thead>
<tr>
<th>states</th>
<th>dead-end</th>
<th>bad</th>
<th>irrelevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>reachable</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>out edges</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

T_h is spurious.
Refining The Abstraction

- **Goal**: refine h so that the dead-end states and bad states do not belong to the same abstract state.

- For this example, two possible solutions.
Refining the abstraction

- Refinement separates dead-end states from bad states, thus, eliminating the spurious transition from S_{i-1} to S_i

- This can be done, for instance, by adding a new predicate to the abstract model and building a new, refined abstract model
Completeness of CEGAR

If M is finite

- Our methodology refines the abstraction until either the property is proved or a real counterexample is found.

- **Theorem** Given a finite model M and an ACTL* specification ϕ whose counterexample is either path or loop, our algorithm will find a model M_a such that $M_a \models \phi \iff M \models \phi$.
Conclusion

We presented a framework for Counterexample Guided Abstraction Refinement (CEGAR) that

- Automatically constructs an initial abstraction, based on the checked property and the system

- If the abstract system contains a spurious counterexample then the abstraction is automatically refined in order to eliminate the counterexample