Introduction to Software Verification

Orna Grumberg

Lectures Material
winter 2017-18
Lecture 5
Model of a system
Kripke structure / transition system

Labeled by atomic propositions AP
(critical section, variable value...)

Reactive Systems
Kripke Structure $M=(S,R,L,S_0)$

Given AP - finite set of atomic proposition

- S - (finite) set of states
- $R \subseteq S \times S$ - total transition relation

 For every $s \in S$ there exists $s' \in S$ such that $(s,s') \in R$.

 Totality means that every path is infinite
- $L: S \rightarrow 2^{AP}$ - labeling function that associates every state with the atomic propositions true in that state
- $S_0 \subseteq S$ - set of initial states (optional)
CTL

State formulas:
- \(p \in \text{AP} \)
- \(\neg g_1, g_1 \lor g_2, g_1 \land g_2 \) where \(g_1, g_2 \) are state formulas
- \(Ef, Af \) where \(f \) is a path formula

Path formulas:
- Every state formula \(g \) is a path formula
- \(\neg f_1, f_1 \lor f_2, f_1 \land f_2, Xf_1, Gf_1, Ff_1, f_1 \lor f_2 \) where \(f_1, f_2 \) are path formulas

CTL - set of all state formulas
Semantics of CTL*

\(\pi = s_0, s_1, \ldots \) is a path in \(M \) if \(R(s_i, s_{i+1}) \) for every \(i \).
\(\pi^i \) - the suffix of \(\pi \) starting at \(s_i \).

State formulas:

- \(M, s \vDash p \iff p \in L(s) \)
- \(M, s \vDash Ef \iff \) there is a path \(\pi \) from \(s \) s.t. \(M, \pi \vDash f \)
- \(M, s \vDash Af \iff \) for every path \(\pi \) from \(s \), \(M, \pi \vDash f \)
Semantics of CTL*

\[\pi = s_0, s_1, \ldots \text{ is a path in } M \text{ if } R(s_i, s_{i+1}) \text{ for every } i. \]

\[\pi^i - \text{the suffix of } \pi \text{ starting at } s_i. \]

Path formulas:

- \(M, \pi \models g \), where \(g \) is a state formula \(\iff \) \(M, s_0 \models g \)

\[\begin{array}{c}
\text{Diagram with arrows indicating paths, starting node colored red.}
\end{array} \]
Semantics of CTL*

\[\pi = s_0, s_1, \ldots \text{ is a path in } M \text{ if } R(s_i, s_{i+1}) \text{ for every } i. \]

\[\pi^i \text{ - the suffix of } \pi \text{ starting at } s_i. \]

Path formulas:

- \(M, \pi \models g \), where \(g \) is a state formula \(\iff M, s_0 \models g \)
- \(M, \pi \models Xf \iff M, \pi^1 \models f \)
Semantics of CTL*

\(\pi = s_0, s_1, ... \) is a path in \(M \) if \(R(s_i, s_{i+1}) \) for every \(i \).

\(\pi^i \) - the suffix of \(\pi \) starting at \(s_i \).

- \(M, \pi \models Gf \iff \) for every \(k \geq 0 \), \(M, \pi^k \models f \)
- \(M, \pi \models Ff \iff \) there exists \(k \geq 0 \), s.t. \(M, \pi^k \models f \)
- \(M, \pi \models f_1 U f_2 \iff \) there exists \(k \geq 0 \), s.t. \(M, \pi^k \models f_2 \) and for every \(0 \leq j < k \), \(M, \pi^j \models f_1 \)
Semantics of CTL*

\(\pi = s_0, s_1, \ldots \) is a path in \(M \) if \(R(s_i, s_{i+1}) \) for every \(i \).

\(\pi^i \) - the suffix of \(\pi \) starting at \(s_i \).

Path formulas:

- \(M, \pi \models g \), where \(g \) is a state formula \(\iff M, s_0 \models g \)
- \(M, \pi \models Xf \iff M, \pi^1 \models f \)
- \(M, \pi \models Gf \iff \) for every \(k \geq 0, M, \pi^k \models f \)
- \(M, \pi \models Ff \iff \) there exists \(k \geq 0, \) s.t. \(M, \pi^k \models f \)
- \(M, \pi \models f_1 U f_2 \iff \) there exists \(k \geq 0, \) s.t. \(M, \pi^k \models f_2 \)
 and for every \(0 \leq j < k, M, \pi^j \models f_1 \)
Semantics of CTL*

\[M \models g \iff \text{for every initial state } s: \ M, s \models g \]
LTL/CTL/CTL*

LTL - state formulas of the form $A\psi$
- ψ - path formula, contains no path quantifiers
- interpreted over infinite computation paths

CTL - state formulas where path quantifiers and temporal operators appear in pairs:
- $AG, AU, AF, AX, EG, EU, EF, EX$
- interpreted over infinite computation trees

CTL - Allows any combination of temporal operators and path quantifiers. Includes both LTL and CTL
LTL

State formulas:
• \(Af \) where \(f \) is a path formula

Path formulas:
• \(p \in AP \)
• \(\neg f_1, f_1 \lor f_2, f_1 \land f_2, \ Xf_1, \ Gf_1, \ Ff_1, \ f_1 U f_2 \) where \(f_1, f_2 \) are path formulas

LTL - set of all state formulas
CTL

CTL - set of all state formulas

- $p \in AP$
- $\neg g_1, g_1 \lor g_2, g_1 \land g_2$
- $AX g_1, AG g_1, AF g_1, A g_1 U g_2$
- $EX g_1, EG g_1, EF g_1, E g_1 U g_2$

where g_1, g_2 are state formulas
Semantics of CTL

Recall: path $\pi=s_0,s_1,\ldots$

- $M,s \models p \iff p \in L(s)$ for $p \in AP$

- $M,s \models \varphi_1 \lor \varphi_2 \iff M,s \models \varphi_1$ or $M,s \models \varphi_2$

- $M,s \models EX \varphi \iff$ there is s' s.t. $R(s,s')$ and $M,s' \models \varphi$

- $M,s \models EG \varphi \iff$ there is a path π from s, s.t. for every $i \geq 0$, $M,s_i \models \varphi$
Semantics of CTL

- $M,s \models E[\varphi_1 U \varphi_2] \iff$ there is a path π from s and there is $k \geq 0$ s.t. $M,s_k \models \varphi_2$ and for every $k > i \geq 0$, $M,s_i \models \varphi_1$

- $M,s \models AG \varphi \iff$ for every path π from s and for every $i \geq 0$, $M,s_i \models \varphi$

- $M,s \models AF \varphi \iff$ for every path π from s there exists $i \geq 0$ s.t. $M,s_i \models \varphi$
Examples (LTL)

1. $AG \neg (\text{start} \land \neg \text{ready})$
2. $AG (\text{req} \rightarrow \text{F ack})$
3. A GF enabled
4. A FG deadlock
5. A $(GF$ enabled $\rightarrow GF$ running)$

Cannot express existential properties: “from any state the system can...”
Examples (CTL)

1. EF (start∧¬ready)
2. AG (req → AF ack)
3. AG (AF enabled)
4. AF (AG deadlock)
5. AG (EF restart)
6. AG (non_critical → EX tryring)
7. AG (try → A[try U succeed])
Equivalence

• Path formulas ψ_1, ψ_2 are equivalent if:
 For every M and path π
 $$M, \pi \models \psi_1 \iff M, \pi \models \psi_2$$

• State formulas φ_1, φ_2 are equivalent if:
 For every M and state s
 $$M, s \models \varphi_1 \iff M, s \models \varphi_2$$
Expressiveness

\(\neg, \lor, X, U, E \) suffice to express all CTL*:

- \(Ff \equiv \text{true} \ U f \)
- \(Gf \equiv \neg F (\neg f) \)
- \(Af \equiv \neg E (\neg f) \)

In CTL: \(EX, EG, EU \) are sufficient

- \(A [p U q] \equiv (\neg EG \neg q) \land \neg E[\neg q \ U (\neg p \land \neg q)] \)
LTL vs. CTL

• A (FG p) has no equivalent in CTL
 “in all paths, p globally holds from some point on”

• Failed attempts:
 AFAGP : “in every path there is a point from which all reachable states satisfy p.”

All paths satisfy FGp
- s₀,s₀,s₀,…
- s₀,…s₀,s₁,s₂,s₂,s₂,…
But first one does not sat FAGp
LTL and CTL vs. CTL*

• $E \ (GFp)$ has no equivalent in LTL or CTL
Theorem:

• The expressive powers of LTL and CTL are incomparable. That is,
 - There is an LTL formula that has no equivalent CTL formula
 - There is a CTL formula that has no equivalent LTL formula

• CTL* is more expressive than either of them
Explicit Model Checking for CTL
Model Checking [CE81, QS82]

An efficient procedure that receives:
- A finite-state model describing a system
- A temporal logic formula describing a property

It returns
yes, if the system has the property
no + Counterexample, otherwise
CTL Model Checking $M \models f$

• For each s, computes label(s):
 set of subformulas of f which are true in s

• The Model Checking algorithm works iteratively
 on subformulas of f, from simpler subformulas to
 more complex ones

• For checking $AG(\text{request} \Rightarrow \text{AF grant})$
 - Check grant, request
 - Then check AF grant
 - Next check request \Rightarrow AF grant
 - Finally check $AG(\text{request} \Rightarrow \text{AF grant})$
Model Checking $\mathcal{M} \models f$ (cont.)

- We check subformula g of f only after all subformulas of g have already been checked.

- For subformula g, the algorithm adds g to $\text{label}(s)$ for every state that satisfies g

 \[g \in \text{label}(s) \iff M, s \models g \]

- The algorithm has time complexity: $O(|\mathcal{M}| \times |f|)$
Model Checking $M \models f$ (cont.)

- $M \models f$ if and only if $f \in \text{labels}(s)$ for all initial states s of M

- Denote $S_f = \{ s \mid M, s \models f \}$

- $M \models f$ if and only if $S_0 \subseteq S_f$
Model Checking Atomic Propositions

• For atomic proposition $p \in \text{AP}$:
 $p \in \text{label}(s) \iff p \in \text{L}(s)$

 Held by alg Defined by M

How do we handle more complex formulas?

Observation:
• Sufficient to handle $\neg, \lor, \text{EX}, \text{EU}, \text{EG}$
Model Checking \neg, \lor formulas

$\neg f_1$: add to label(s) if and only if $f_1 \not\in \text{labels}(s)$

$f_1 \lor f_2$: add to label(s) if and only if $f_1 \in \text{labels}(s)$ or $f_2 \in \text{labels}(s)$
Model Checking $g = \text{EX } f_1$

add g to label(s) if and only if s has a successor t such that $f_1 \in \text{labels}(t)$

procedure $\text{CheckEX}(f_1)$

$T := \{ t \mid f_1 \in \text{label}(t) \}$

while $T \neq \emptyset$ do

choose $t \in T$; $T := T \setminus \{t\}$

for all s s.t. $R(s,t)$ do

if $EX f_1 \notin \text{label}(s)$ then

label(s) := label(s) $\cup \{ EX f_1 \}$;

end for all

end while
Model Checking $g = E(f_1 \cup f_2)$

procedure $\text{CheckEU} \left(f_1, f_2 \right)$

$T := \{ s \mid f_2 \in \text{label}(s) \}$

For all $s \in T$ do

$\text{label}(s) := \text{label}(s) \cup \{ E(f_1 \cup f_2) \}$

while $T \neq \emptyset$ do

choose $s \in T$; $T := T \setminus \{s\}$

for all t s.t. $R(t,s)$ do

if $E(f_1 \cup f_2) \notin \text{label}(t)$ and $f_1 \in \text{label}(t)$ then

$\text{label}(t) := \text{label}(t) \cup \{ E(f_1 \cup f_2) \};$

$T := T \cup \{t\}$

end for all

end while

Do not add a state to T more than once
Example $g = E(f_1 \cup f_2)$