Signal and Image Processing (236327)

Tutorial 9

The Discrete Fourier Transform (DFT)
The DFT Matrix

The DFT matrix of size $M \times M$ is defined as

$$\text{[DFT]} = \frac{1}{\sqrt{M}} \begin{bmatrix} (W^*)^{0\cdot0} & \cdots & (W^*)^{0\cdot(M-1)} \\ \vdots & \ddots & \vdots \\ (W^*)^{(M-1)\cdot0} & \cdots & (W^*)^{(M-1)\cdot(M-1)} \end{bmatrix}$$

$W \triangleq e^{i\frac{2\pi}{M}} = \cos\left(\frac{2\pi}{M}\right) + i \sin\left(\frac{2\pi}{M}\right)$

$i \triangleq \sqrt{-1}$

and * denotes complex conjugate

$W^* \triangleq e^{-i\frac{2\pi}{M}} = \cos\left(\frac{2\pi}{M}\right) - i \sin\left(\frac{2\pi}{M}\right)$

The DFT matrix is symmetric and unitary, hence, its inverse is

$$\text{[DFT]}^* = \frac{1}{\sqrt{M}} \begin{bmatrix} W^{0\cdot0} & \cdots & W^{0\cdot(M-1)} \\ \vdots & \ddots & \vdots \\ W^{(M-1)\cdot0} & \cdots & W^{(M-1)\cdot(M-1)} \end{bmatrix}$$

i.e., $\text{[DFT]}^*\text{[DFT]} = \text{[DFT]}\text{[DFT]}^* = I$
Representation of a Discrete Signal in the DFT Domain

Uniform sampling of the continuous signal \(\varphi(t) \) provides us the discrete set of \(M \triangleq 2N + 1 \) samples:

\[
\varphi_{-N}, \varphi_{-(N-1)}, \ldots, \varphi_0, \ldots, \varphi_{N-1}, \varphi_N
\]

that can be also arranged in a column vector as follows:

\[
\varphi =
\begin{bmatrix}
\varphi_0 \\
\varphi_1 \\
\vdots \\
\varphi_N \\
\varphi_{-N} \\
\varphi_{-(N-1)} \\
\vdots \\
\varphi_{-1}
\end{bmatrix}
\]

Note the position of the negative-indexed samples.
Representation of a Discrete Signal in the DFT Domain

The representation of the discrete signal \(\varphi \) is

\[
\varphi^F = [\text{DFT}] \varphi
\]

or in a more explicit form:

\[
\begin{bmatrix}
\varphi_F^0 \\
\varphi_F^1 \\
\vdots \\
\varphi_F^N \\
\varphi_F^{-(N-1)} \\
\vdots \\
\varphi_F^{-1}
\end{bmatrix}
= \frac{1}{\sqrt{M}}
\begin{bmatrix}
(W^*)^{0 \cdot 0} & \ldots & (W^*)^{0 \cdot (M-1)} \\
\vdots & \ddots & \vdots \\
(W^*)^{(M-1) \cdot 0} & \ldots & (W^*)^{(M-1) \cdot (M-1)}
\end{bmatrix}
\begin{bmatrix}
\varphi_0 \\
\varphi_1 \\
\vdots \\
\varphi_N \\
\varphi_{-(N-1)} \\
\vdots \\
\varphi_{-1}
\end{bmatrix}
\]

Note that the negative index \(-k\) (for \(k = 1, \ldots, N\)) can be considered also as the positive index \(M - k\).
Representation of a Discrete Signal in the DFT Domain

The DFT-domain representation is obtained via

\[\varphi^F = [\text{DFT}] \varphi \]

Multiplying both sides of the equation by \([\text{DFT}]^*\), i.e.,

\[[\text{DFT}]^* \varphi^F = [\text{DFT}]^* [\text{DFT}] \varphi \]

and, as the DFT matrix is unitary, we get

\[\varphi = [\text{DFT}]^* \varphi^F \]

which is the inverse DFT procedure:

Given \(\varphi^F\) it provides the signal-domain representation \(\varphi\).
DFT Example #1: The Kronecker Delta

Consider the following discrete signal of M samples:

For $n = 0, \ldots, M - 1$:
$$\varphi_n = \delta_{n,n_0} = \begin{cases} 1 & \text{, for } n = n_0 \\ 0 & \text{, otherwise} \end{cases}$$

where $n_0 \in \{0, \ldots, M - 1\}$

δ_{n,n_0} is also known as the Kronecker delta, here shifted to n_0.

The DFT of the above signal is

$$\varphi^F = \frac{1}{\sqrt{M}} \begin{bmatrix} (W^*)^{0 \cdot 0} & \cdots & (W^*)^{0 \cdot (M-1)} \\ \vdots & \ddots & \vdots \\ (W^*)^{(M-1) \cdot 0} & \cdots & (W^*)^{(M-1) \cdot (M-1)} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \\ \vdots \\ 0 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix} (W^*)^{0 \cdot n_0} \\ (W^*)^{1 \cdot n_0} \\ \vdots \\ (W^*)^{(M-1) \cdot n_0} \end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix} e^{-i\frac{2\pi}{M}0 \cdot n_0} \\ e^{-i\frac{2\pi}{M}1 \cdot n_0} \\ \vdots \\ e^{-i\frac{2\pi}{M}(M-1) \cdot n_0} \end{bmatrix}$$

Note the particular case of $n_0 = 0$.
DFT Example #2: Cosine Signal

Consider the following discrete signal of M samples:

For $n = 0, ..., M - 1$:
$$\varphi_n = \cos\left(\frac{2\pi k_0}{M} n\right)$$

where
$$k_0 \in \{0, ..., M - 1\}$$

Recall that
$$\cos\left(\frac{2\pi k_0}{M} n\right) = \frac{1}{2} e^{i\frac{2\pi k_0}{M} n} + \frac{1}{2} e^{-i\frac{2\pi k_0}{M} n} = \frac{1}{2} (W_{k_0}^n + W^{-k_0}n)$$

The k^{th} component of the DFT-domain representation of the above signal is

$$\varphi_k^F = \frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} (W^*)^{k\cdot n} \varphi_n = \frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} W^{-k\cdot n} \frac{1}{2} (W_{k_0}^n + W^{-k_0}n) =$$

$$= \frac{1}{\sqrt{M}} \left(\frac{1}{2} \sum_{n=0}^{M-1} W^{-k\cdot n} W_{k_0}^n + \frac{1}{2} \sum_{n=0}^{M-1} W^{-k\cdot n} W^{-k_0}n \right) = \frac{1}{\sqrt{M}} \left(\frac{1}{2} \sum_{n=0}^{M-1} W^{-(k-k_0)\cdot n} + \frac{1}{2} \sum_{n=0}^{M-1} W^{-(k+k_0)\cdot n} \right)$$
DFT Example #2: Cosine Signal

Let us examine the expression $\sum_{n=0}^{M-1} W^{-(k-k_0)n}$:

For $k = k_0$: $\sum_{n=0}^{M-1} W^{-(k-k_0)n} = \sum_{n=0}^{M-1} W^{-0}n = \sum_{n=0}^{M-1} 1 = M$

For $k \neq k_0$: $\sum_{n=0}^{M-1} W^{-(k-k_0)n} = \sum_{n=0}^{M-1} (W^{-(k-k_0)})^n = \frac{(W^{-(k-k_0)})^M - 1}{W^{-(k-k_0)} - 1}$

Recall that $W = e^{i\frac{2\pi}{M}}$ [and that $W^0, W^1, ..., W^{M-1}$ are the M roots (of order M) of unity].

Noting that $(W^{-(k-k_0)})^M = (W^M)^{-(k-k_0)} = (e^{i\frac{2\pi}{M}M})^{-(k-k_0)} = (e^{i2\pi})^{-(k-k_0)} = 1$ implies

For $k \neq k_0$: $\sum_{n=0}^{M-1} W^{-(k-k_0)n} = 0$ \quad $\sum_{n=0}^{M-1} W^{-(k-k_0)n} = M \cdot \delta_{k,k_0} = \begin{cases} M & \text{for } k = k_0 \\ 0 & \text{otherwise} \end{cases}$
DFT Example #2: Cosine Signal

Using the last result

\[
\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} = M \cdot \delta_{k,k_0} = \begin{cases}
M & , \text{for} \ k = k_0 \\
0 & , \text{otherwise}
\end{cases}
\]

The following development justifies the correspondence between the negative index $-k_0$ and the index $M - k_0$:

\[
\sum_{n=0}^{M-1} W^{-(k+k_0) \cdot n} = \sum_{n=0}^{M-1} W^{-(k+k_0-M) \cdot n} = \sum_{n=0}^{M-1} W^{-(k-(M-k_0)) \cdot n} = M \cdot \delta_{k,M-k_0} = \begin{cases}
M & , \text{for} \ k = M - k_0 \\
0 & , \text{otherwise}
\end{cases}
\]

We develop the expression for the k^{th} component of the DFT-domain representation of the cosine signal:

\[
\phi_k = \frac{1}{\sqrt{M}} \left(\frac{1}{2} \sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} + \frac{1}{2} \sum_{n=0}^{M-1} W^{-(k+k_0) \cdot n} \right) = \frac{1}{\sqrt{M}} \left(\frac{1}{2} M \cdot \delta_{k,k_0} + \frac{1}{2} M \cdot \delta_{k,M-k_0} \right) = \\
= \frac{\sqrt{M}}{2} \delta_{k,k_0} + \frac{\sqrt{M}}{2} \delta_{k,M-k_0}
\]
Image Enhancement in The DFT Domain

• We are given a noisy image of size 256×256:

$$I_{noisy}[r, n] = I[r, n] + noise[r, n]$$

• The noise is harmonic and follows the formula:

$$noise[r, n] = A_r \cdot \cos \left(2\pi fn + \phi_r \right)$$

• $f = \frac{1}{8 \text{ pixels}}$

• The amplitude, A, and the phase, φ, are random and independent for each row.
Image Enhancement in The DFT Domain

\[A_{100} = 22.37 \]
\[\varphi_{100} = 1.325 \text{rad} \]
Image Enhancement in The DFT Domain

Original Cameraman Image

Picture with noise
Image Enhancement in The DFT Domain
The Image-Domain Smoothing Alternative

Picture after average filter 1X4

Picture after average filter 1X6
Image Enhancement in The DFT Domain

Alternatives: Smoothing vs Median (8 pixels)

No noise but image is blurred
Image Enhancement in The DFT Domain

- DFT of the noise in line \(r \)

Recall that \(M = 256 \) and \(f = \frac{1}{8} \), hence

\[
noise_n^{(r)} = A_r \cos(2\pi fn + \phi_r) = A_r \cos \left(2\pi \frac{32}{M} n + \phi_r \right)
\]

Then, since the signal is a shifted cosine function, its DFT is

\[
DFT \left\{ noise^{(r)} \right\}_k = \begin{cases}
\frac{\sqrt{M}}{2} A_r e^{i\phi_r}, & k = 32, 224 \\
0, & \text{else}
\end{cases}
\]

Here we would like to handle frequencies 32 and 224 (recall that 224 can also be considered as -32).
Image Enhancement in The DFT Domain

Noisy signal in DFT domain

Filtered signal in DFT domain

Notch Filter: Attenuate Specific Frequencies
Image Enhancement in The DFT Domain

- The noise was significantly removed.
- Original image was not fully restored
 - We cannot restore the attenuated frequencies
Image Enhancement in The DFT Domain

Notch filter

Smoothing filter of 8 pixels
Image Enhancement in The DFT Domain Implementation

- Filter in freq. domain:
 \[
 \text{Filter} = \text{ones}(1,256);
 \]
 \[
 \text{Filter}(32+1) = 0;
 \]
 \[
 \text{Filter}(224+1) = 0;
 \]

- Filtration:
 \[
 \text{For } k=1: \text{size(I,1)}, \quad Y = \text{fft}(I(k,:)) \ast \text{Filter};
 \]
 \[
 I(k,:) = \text{ifft}(Y);
 \]
 \[
 \text{end}
 \]