Complexity of algebraic computation

Homework assignment #3

1. Prove that \(\omega \) is an \(n \)th primitive root of unity if and only if the following holds.

\[
\omega^n = 1 \quad \text{and for each prime divisor } p \text{ of } n, \ \omega^{n/p} \neq 1.
\]

2. What is the number of primitive \(n \)th roots of unity?

3. For which positive integers \(n \) there are primitive \(n \)th roots of unity in the following fields?
 - The \(q \)-element finite field.
 - \(\mathbb{R} \).
 - \(\mathbb{Q}(i) \).

4. Prove that \(W(\omega^{-1}) \) results in a permutation of rows of \(W(\omega) \). Describe the permutation and determine for which values of \(n \) it is even and odd.

5. Modify the discrete Fourier transform algorithm for the case where \(n \) is a power of 3.

6. Modify the discrete Fourier transform algorithm for the case where \(n \) is of the form \(2^\ell 3^m \).