The Schönhage-Strassen algorithm for integer multiplication
Let u and v be non-negative integers in the binary representation of length n. We shall compute $\text{rem}(uv, 2^n + 1)$ in $O(n \log n \log \log n)$ bit operations.

Note From $\text{rem}(uv, 2^{2n} + 1)$ we can compute the product uv itself in $O(2n \log 2n \log \log 2n) = O(n \log n \log \log n)$ bit operations, when we multiply $\underbrace{0 \cdots 0}_n u$ and $\underbrace{0 \cdots 0}_n v$ modulo 2^{2n}.

Note We assume that n is a power of 2; $n = 2^m$ (why may we assume that?).

Let $b = 2^{\lfloor m/2 \rfloor}$ and let $\ell = n/b$. Then $\ell \geq b$ and b divides ℓ: ℓ/b equals 1 or 2.
Let
\[u = \sum_{i=0}^{b-1} u_i 2^\ell i \quad \text{and} \quad v = \sum_{j=0}^{b-1} v_j 2^\ell j, \]
where \(u_i \)'s and \(v_j \)'s are \(\ell \)-bit integers.

\[u: \quad u_b-1 \quad \ldots \quad u_1 \quad u_0 \quad \quad \quad \quad \quad \quad v: \quad v_b-1 \quad \ldots \quad v_1 \quad v_0 \]

Then \(uv = \sum_{k=0}^{2b-2} y_k 2^\ell k \), where \(y_k = \sum_{i+j=k} u_i v_j, k = 0, 1, \ldots, 2b - 2 \).

Since \(n = b\ell, 2^{b\ell} \equiv -1 \mod 2^n + 1 \), and
\[uv \equiv \sum_{k=0}^{b-1} w_k 2^\ell k \mod 2^n + 1, \]
where \(w_k = y_k - y_{k+b}, k = 0, 1, \ldots, b - 1 \), and \(y_{2b-1} = 0 \).

Since \(0 \leq y_k < b2^{2\ell} \) (why?), \(|w_k| < b2^{2\ell} \), \(k = 0, 1, \ldots, b - 1 \).
Therefore, after computing the w_k’s, $k = 0, 1, \ldots, b - 1$, we need only $O(n)$ bit additions to compute $\text{rem}(uv, 2^n + 1)$:

This is because the length of w_k does not exceed $2\ell + \log b$, and, therefore

$$b(2\ell + \log b) = 2b\ell + 2b \log b = O(n).$$
Computation of w_k
Let
\[f(\lambda) = \sum_{i=0}^{b-1} u_i \lambda^i \quad \text{and} \quad g(\lambda) = \sum_{j=0}^{b-1} v_j \lambda^j. \]

Then the coefficients of
\[h(\lambda) = \text{rem}(f(\lambda)g(\lambda), \lambda^b + 1) \]
are the \(w_k \)'s:

if \(f(\lambda)g(\lambda) = \sum_{k=0}^{2b-2} y_k \lambda^k \), where \(y_k = \sum_{i+j=k} u_i v_j \), then, since
\[\lambda^b = -1 \mod \lambda^b + 1, \]
we have
\[f(\lambda)g(\lambda) \equiv_{\lambda^b+1} \sum_{k=0}^{b-1} (y_k - y_{k+b}) \lambda^k = \sum_{k=0}^{b-1} w_k \lambda^k = h(\lambda). \]
\[w_k = y_k - y_{k+b} = \sum_{i+j=k} u_i v_j - \sum_{i+j=k+b} u_i v_j \]

It follows that
\[((k+1) - b)2^\ell < w_k < (k+1)2^\ell \]
(how?).

In particular, as we have already seen (where?),
\[|w_k| < b2^\ell. \]

We compute \(w_k \) modulo \(b(2^\ell + 1) \) and then we insert the residue into the appropriate interval: \([1, (k+1)2^\ell]\) or \(((k+1) - b)2^\ell, 0]\) by shifting by a multiple of \(b2^\ell \).

Since \((b, 2^\ell + 1) = 1\), we first compute
\[w'_k = \text{rem}(w_k, b) \quad \text{and} \quad w''_k = \text{rem}(w_k, 2^\ell + 1), \]
and then compute \(w_k \) from \(w'_k \) and \(w''_k \) using the Chinese remainder theorem.
Computation of w_k from w'_k and w''_k
Proposition \[w_k = (2^{2\ell} + 1) \text{rem}(w'_k - w''_k, b) + w''_k. \]

Proof By the Chinese remainder theorem, it suffices to show that

- the right-hand side of the equality is equivalent to \(w'_k \) modulo \(b \) and
- is equivalent to \(w''_k \) modulo \(2^{2\ell} + 1 \)

(why?).

The equivalence

\[
(2^{2\ell} + 1) \text{rem}(w'_k - w''_k, b) + w''_k \equiv w'_k \pmod{2^{2\ell} + 1}
\]

is immediate (why?) and, since \(b \) is a power of 2 and \(b \leq \ell \), it divides \(2^{2\ell} \), implying

\[
2^{2\ell} + 1 \equiv 1 \pmod{b}.
\]

Therefore,

\[
(2^{2\ell} + 1) \text{rem}(w'_k - w''_k, b) + w''_k \equiv 1 \cdot (w'_k - w''_k) + w''_k \equiv w'_k \pmod{b}.
\]

\(\square \)
\[w_k = (2^{2\ell} + 1) \text{rem}(w'_k - w''_k, b) + w''_k \]

Thus, \(w_k \) can be computed from \(w'_k \) and \(w''_k \) in \(O(\ell) \) bit operations (how?).

Another \(O(\ell) \) bit operations are needed to put \(w_k \) in its place (what does it mean?).

Summing up, we see that all \(w_k \)'s can be computed from the \(w'_k \)'s and \(w''_k \)'s in
\[bO(\ell) = O(b\ell) = O(n) \]

bit operations.
Computation of w'_k
\[w'_k = \text{rem} \left(\sum_{i+j=k} u_i v_j - \sum_{i+j=k+b} u_i v_j, b \right) = \text{rem} \left(\sum_{i+j=k} u'_i v'_j - \sum_{i+j=k+b} u'_i v'_j, b \right), \]

where
\[u'_i = \text{rem}(u_i, b) \quad \text{and} \quad v'_j = \text{rem}(v_j, b). \]

Let
\[y'_k = \sum_{i+j=k} u'_i v'_j. \]

Then
\[w'_k = \text{rem}(y'_k - y'_{k+b}, b). \]

Remark Since \(u'_k, v'_k < b \) (why?), it follows that \(y'_k < b^3 \) (how?).
Let
\[\hat{u} = \sum_{i=0}^{b-1} u'_i 2^{3i} \log_2 b \quad \text{and} \quad \hat{v} = \sum_{j=0}^{b-1} v'_j 2^{3j} \log_2 b. \]

Since \(y'_k < b^3 \), the \(y'_k \)'s are “mutually disjoint” in \(\hat{u} \hat{v} \). Therefore, we can “extract” all \(y'_k \)'s from the product in \(\hat{u} \hat{v} \).
Denote by $||m||$ the length of an integer m.

Since

$$||\hat{u}||, ||\hat{v}|| \leq ||3b \log_2 b||,$$

(why?), we can compute the product $\hat{u} \hat{v}$ in

$$O\left((b \log b)^{1.59}\right) = O\left((\sqrt{n \log n})^{1.59}\right) = O(n)$$

bit operations.
Computation of w''_k
Since
\[u_i, v_j, w''_k < 2^{2\ell} + 1, \]
the computation will be performed modulo \(2^{2\ell} + 1 \), i.e., in \(\mathbb{Z}_{2^{2\ell} + 1} \).

Recall that we have to compute the coefficients of \(\text{rem}(f(\lambda)g(\lambda), \lambda^b + 1) \).

Let \(\omega = 2^{2\ell}/b \). Then
\[\omega^b = 2^{2\ell} \equiv -1 \mod 2^{2\ell} + 1, \]
implying
\[\omega^{2b} \equiv 1 \mod 2^{2\ell} + 1. \]

Let \(s \) be such that \(b = 2^s \) (why there is such an \(s \))? Then
\[b^{-1} \equiv 2^{4\ell-s} \mod 2^{2\ell} + 1, \]
because
\[b \cdot 2^{4\ell-s} = (2^{2\ell})^2 \equiv_{2^{2\ell}+1} (-1)^2 = 1. \]
As we have already seen (where?),

\[
\begin{pmatrix}
 w_0'' \\
 \omega w_1'' \\
 \vdots \\
 \omega^i w_i'' \\
 \vdots \\
 \omega^{b-1} w_{b-1}''
\end{pmatrix}
= \frac{W(\omega^{2(b-1)})}{b}
\begin{pmatrix}
 w_0'' \\
 \omega w_1'' \\
 \vdots \\
 \omega^i w_i'' \\
 \vdots \\
 \omega^{b-1} w_{b-1}''
\end{pmatrix}
\cdot
\begin{pmatrix}
 u_0 \\
 \omega u_1 \\
 \vdots \\
 \omega^i u_i \\
 \vdots \\
 \omega^{b-1} u_{b-1}
\end{pmatrix}
\cdot
\begin{pmatrix}
 v_0 \\
 \omega v_1 \\
 \vdots \\
 \omega^i v_i \\
 \vdots \\
 \omega^{b-1} v_{b-1}
\end{pmatrix}.
\]
• Addition/subtraction in \(\mathbb{Z}_{2^{2\ell} + 1} \) can be performed in \(O(\ell) \) bit operations (why?).

• Multiplication by \(\omega^i \) is a shift followed by subtraction (how?) and, therefore can be also performed in \(O(\ell) \) bit operations.

• Therefore, since the Fourier transform can be preformed in \(O(b \log b) \) additions/subtractions and shifts, the \(w'''_{k} \)'s can be computed in \(O(\ell b \log b) + bM(2\ell) \), where \(M(n) \) is the number of bit operation needed to compute the product of two \(n \)-bit integers modulo \(2^n + 1 \) (why?).

Therefore,
\[
M(n) \leq O(\ell b \log b) + bM(2\ell) + O(n)
= O(n \log n) + bM(2\ell) + O(n),
\]
where \(O(n) \) includes

• Computation of \(uv \) from \(w_{k} \)'s,

• computation of \(w'_{k} \)'s and \(w'''_{k} \)'s, and

• computation of \(w_{k} \)'s from \(w'_{k} \)'s and \(w'''_{k} \)'s

(why?).
\[M(n) \leq cn \log n + bM(2\ell) \]

or

\[
\frac{M(n)}{n \log n} \leq c + \frac{M(2\ell)}{\ell \log n}
\]

(why?).

Since \(b = \ell \), if \(m \) is even, and \(2b = \ell \), if \(m \) is odd (what is \(m \)?),

\[
\sqrt{n} \leq \ell \leq 2\sqrt{n}.
\]

If we denote \(\frac{3M(x)}{x \log x} \) by \(M'(x) \), then

\[
M'(n) \leq c + M'(4\sqrt{n})
\]

(why?).
\[M'(n) \leq c + M'(4\sqrt{n}) \]

Proposition For all \(t \geq 1 \),

\[M'(n) \leq tc + M'(16n^{1/2t}) . \]

Proof The proof is by induction on \(t \). The basis is immediate (why?) and for the induction step assume that the inequality holds for \(t \). Then

\[
M'(n) \leq tc + M' \left(16n^{1/2t} \right) \\
\leq tc + c + M' \left(4 \left(16n^{1/2t} \right)^{1/2} \right) \\
= (t + 1)c + M' \left(16n^{1/2t+1} \right) .
\]

\[\square \]
If \(t = \log_2 \log_2 n \), then

\[
n^{1/2^t} = n^{\frac{1}{\log_2 n}} = \left(2^{\log_2 n}\right)^{\frac{1}{\log_2 n}} = 2.
\]

Therefore,

\[
M'(n) \leq c \log \log n + M'(32),
\]

implying

\[
M(n) = O(n \log n \log \log n).
\]
Summary:

\[
uv \equiv \sum_{k=0}^{b-1} w_k 2^\ell k \mod 2^n + 1
\]

\[
w' = \text{rem}(w_k, b)
\]

\[
w'' = \text{rem}(w_k, 2^{2\ell} + 1)
\]

\[
w_k = (2^{2\ell} + 1)\text{rem}(w'_k - w''_k, b) + w''_k
\]