Complexity of algebraic computation
Some divide and conquer algorithms
Proposition Let a, b, c, and d be positive integers. The solution to the recurrence

$$T(n) = \begin{cases}
 b, & \text{for } n = 1 \\
 aT(n/c) + bn^d, & \text{for } n > 1
\end{cases}$$

(for n being a power of c) is

$$T(n) = \begin{cases}
 O(n^d), & \text{if } a < c^d \\
 O(n^d \log n), & \text{if } a = c^d \\
 O(n^{\log_c a}), & \text{if } a > c^d
\end{cases}$$

Lemma

$$T(c^k) = bc^{kd} \sum_{i=0}^{k} \left(\frac{a}{cd} \right)^i$$
Proof The proof is by induction on k. The basis ($k = 0$) is trivial (how?) and for the induction step assume that the equality holds for k. Then

$$T(c^{k+1}) = aT(c^k) + bc^{(k+1)d}$$

$$= abc^{kd} \sum_{i=0}^{k} \left(\frac{a}{cd} \right)^i + bc^{(k+1)d}$$

$$= bc^{(k+1)d} \left(\sum_{i=0}^{k} \left(\frac{a}{cd} \right)^i + 1 \right)$$

$$= bc^{(k+1)d} \left(\sum_{i=1}^{k+1} \left(\frac{a}{cd} \right)^i + 1 \right)$$

$$= bc^{(k+1)d} \sum_{i=0}^{k+1} \left(\frac{a}{cd} \right)^i.$$

\square
Corollary

\[T(n) = bn^d \sum_{i=0}^{k} \left(\frac{a}{c^d} \right)^i \]

Proof of the proposition If \(a = c^d \), then

\[T(n) = bn^d \sum_{i=0}^{k} \left(\frac{a}{c^d} \right)^i = bn^d \sum_{i=0}^{k} 1 = O(n^d \log n). \]

Otherwise,

\[T(n) = bn^d \sum_{i=0}^{k} \left(\frac{a}{c^d} \right)^i = bn^d \left(\frac{a/c^d}{(a/c^d) - 1} \right)^{\log_e n + 1} - 1, \]

which is \(O(n^d) \), if \(a < c^d \) (why?).
Finally, if \(a > c^d \), then

\[
T(n) = bn^d \frac{(a/c^d)^{\log_c n+1} - 1}{(a/c^d) - 1} < \frac{bn^d}{(a/c^d) - 1} (a/c^d)^{\log_c n+1}
\]

\[
= \frac{a}{c^d} \frac{bn^d}{(a/c^d) - 1} n^{\log_c a} = \frac{ab}{a - c^d} n^{\log_c a}
\]

\[
= O(n^{\log_c a}) .
\]
Multiplication of polynomials
\[
x(\lambda) = \sum_{i=0}^{n-1} x_i \lambda^i,
\]

\[
y(\lambda) = \sum_{j=0}^{n-1} y_j \lambda^j, \text{ and}
\]

\[
z(\lambda) = x(\lambda)y(\lambda) = \sum_{k=0}^{2n-2} z_k \lambda^k.
\]

That is \(z_k = \sum_{i+j=k} x_i y_j\), \(k = 0, 1, \ldots, 2n - 2\).
The computation task

Given $x_0, x_1, \ldots, x_{n-1}$ and $y_0, y_1, \ldots, y_{n-1}$, compute

\begin{align*}
 z_0 &= x_0 y_0 \\
 z_1 &= x_0 y_1 + x_1 y_0 \\
 &\vdots & \vdots & \vdots \\
 z_{n-1} &= x_0 y_{n-1} + x_1 y_{n-2} + \cdots + x_{n-1} y_0 \\
 z_n &= x_1 y_{n-1} + \cdots + x_{n-1} y_1 \\
 &\vdots & \vdots \\
 z_{2n-2} &= x_{n-1} y_{n-1} \\
\end{align*}

A straightforward computation requires n^2 multiplications and $(n - 1)^2$ additions.
Example

\[(x_1 \lambda + x_0)(y_1 \lambda + y_0)\]
\[= x_1 y_1 \lambda^2 + (x_0 y_1 + x_1 y_0) \lambda + x_0 y_0\]
\[= x_1 y_1 \lambda^2 + ((x_0 + x_1)(y_0 + y_1) - x_1 y_1 - x_0 y_0) \lambda + x_0 y_0\]

This computation is performed in 3 multiplications (which ones?) and 4 additions/subtractions.

Let \(M(n)\) denote the number of algebraic operations needed to compute the product of two polynomials of degree \(n - 1\).
Assume that \(n \) is even and let
\[
x_0(\lambda) = \sum_{i=0}^{\frac{n}{2}-1} x_i \lambda^i, \quad x_1(\lambda) = \sum_{i=0}^{\frac{n}{2}-1} x_{i+\frac{n}{2}} \lambda^i,
\]
\[
y_0(\lambda) = \sum_{j=0}^{\frac{n}{2}-1} y_j \lambda^j, \quad y_1(\lambda) = \sum_{j=0}^{\frac{n}{2}-1} y_{j+\frac{n}{2}} \lambda^j.
\]
Then
\[
x(\lambda)y(\lambda)
= (x_1(\lambda)\lambda^{\frac{n}{2}} + x_0(\lambda))(y_1(\lambda)\lambda^{\frac{n}{2}} + y_0(\lambda))
= x_1(\lambda)y_1(\lambda)\lambda^n
+ ((x_0(\lambda) + x_1(\lambda))(y_0(\lambda) + y_1(\lambda)) - x_1(\lambda)y_1(\lambda) - x_0(\lambda)y_0(\lambda))\lambda^{\frac{n}{2}}
+ x_0(\lambda)y_0(\lambda)
\]
Thus, \(M(n) \leq 3M(\frac{n}{2}) + O(n) \), implying \(M(n) = O(n^{\log_2 3}) = O(n^{1.59}) \).
Multiplication of integers
Let $x = \sum_{i=0}^{n-1} x_i 2^i$ and $y = \sum_{i=0}^{n-1} y_j 2^j$.

A “naive” computation of $xy = \sum_{j=0}^{n-1} y_j x 2^j$ requires $O(n^2)$ bit operations.
Assume that n is even and let

$$x = x_12^{\frac{n}{2}} + x_0 \quad y = y_12^{\frac{n}{2}} + y_0$$

Then

$$xy = x_1y_12^n + (x_0y_1 + x_1y_0)2^{\frac{n}{2}} + x_0y_0$$

The products x_0y_0, x_1y_1, and the sum of products

$$x_0y_1 + x_1y_0 = (x_1 + x_0)(y_1 + y_0) - x_0y_0 - x_1y_1$$

can be computed in three multiplications of integers of length $\frac{n}{2}$ and $O(n)$ additional bit operations (for additions and subtractions).

Let $M(n)$ denote the number of bit operations need for computing the product of two n-bit integers.\(^1\) Then $M(n) = O(n\log_2 3) = O(n^{1.59})$.

\(^1\)The number of operations need for computing the product of two objects will be always denoted by M. It is clear from the context which objects are dealt with.
Back to multiplication of polynomials: an optimal algorithm
Alternatively, the coefficients of the product of two polynomials of degree \(n - 1 \) can be computed as follows.

1. Fix any 2\(n-1\) pairwise distinct field elements (points) \(t_0, t_1, \ldots, t_{2n-2} \) and evaluate \(x(\lambda) \) and \(y(\lambda) \) at these points.

2. Compute \(z(t_k) = x(t_k)y(t_k), \ k = 1, 2, \ldots, 2n - 1 \).

3. Interpolate the coefficients of \(z(\lambda) \).

This algorithm requires only 2\(n - 1\) multiplications.
Multiplication of matrices
Let
\[X = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} \quad Y = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \]
and let
\[XY = Z = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} = \begin{pmatrix} x_{11}y_{11} + x_{12}y_{21} & x_{11}y_{12} + x_{12}y_{22} \\ x_{21}y_{11} + x_{22}y_{21} & x_{21}y_{12} + x_{22}y_{22} \end{pmatrix}. \]

Computation task: Given \(\{x_{11}, x_{12}, x_{21}, x_{22}\} \) and \(\{y_{11}, y_{12}, y_{21}, y_{22}\} \), compute

\[
\begin{align*}
 z_{11} &= x_{11}y_{11} + x_{12}y_{21} \\
 z_{12} &= x_{11}y_{12} + x_{12}y_{22} \\
 z_{21} &= x_{21}y_{11} + x_{22}y_{21} \\
 z_{22} &= x_{21}y_{12} + x_{22}y_{22}
\end{align*}
\]

A “naive” computation requires 8 multiplications and 4 additions.
\[\begin{align*}
m_1 &= (x_{12} - x_{22})(y_{21} + y_{22}) \\
m_2 &= (x_{11} + x_{22})(y_{11} + y_{22}) \\
m_3 &= (x_{11} - x_{21})(y_{11} + y_{12}) \\
m_4 &= (x_{11} + x_{12})y_{22} \\
m_5 &= x_{11}(y_{12} - y_{22}) \\
m_6 &= x_{22}(y_{21} - y_{11}) \\
m_7 &= (x_{21} + x_{22})y_{11} \\
\end{align*}\]

\[\begin{align*}
z_{11} &= m_1 + m_2 - m_4 + m_6 \\
z_{12} &= m_4 + m_5 \\
z_{21} &= m_6 + m_7 \\
z_{22} &= m_2 - m_3 + m_5 - m_7 \\
\end{align*}\]

Here we have 7 multiplications and 18 additions/subtractions.
Let $X = (x_{ik})$ and $Y = (y_{kj})$ be $n \times n$ matrices:

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ \vdots & \vdots & & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{in} \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} \quad Y = \begin{pmatrix} y_{11} & \cdots & y_{1j} & \cdots & y_{1n} \\ y_{21} & \cdots & y_{2j} & \cdots & y_{2n} \\ \vdots & \vdots & \vdots & & \vdots \\ y_{n1} & \cdots & y_{nj} & \cdots & y_{nn} \end{pmatrix}$$

and let $XY = (z_{ij})$, where $z_{ij} = \sum_{k=1}^{n} x_{ik} y_{kj}$.
Assume that \(n \) is even and partition the matrices \(X, Y, \) and \(Z = XY \) as follows.

\[
X = \begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix}
\quad Y = \begin{bmatrix}
Y_{11} & Y_{12} \\
Y_{21} & Y_{22}
\end{bmatrix}
\quad Z = \begin{bmatrix}
Z_{11} & Z_{12} \\
Z_{21} & Z_{22}
\end{bmatrix},
\]

where \(X_{ij}, Y_{ij}, \) and \(Z_{ij} \) are \(\frac{n}{2} \times \frac{n}{2} \) matrices, \(i, j = 1, 2. \)

Then

\[
\begin{align*}
Z_{11} &= X_{11}Y_{11} + X_{12}Y_{21} \\
Z_{12} &= X_{11}Y_{12} + X_{12}Y_{22} \\
Z_{21} &= X_{21}Y_{11} + X_{22}Y_{21} \\
Z_{22} &= X_{21}Y_{12} + X_{22}Y_{22}.
\end{align*}
\]
\[
\begin{array}{ccc}
X_{11} & X_{12} & i \\
\hline
\times & Y_{12} & j \\
\hline
Y_{22} & & \\
\hline
\end{array}
\]

=

\[
\begin{array}{ccc}
\bullet & \text{z}_{ij} & \\
\hline
\end{array}
\]
Now $M(n)$ denotes the minimal number of operations (additions and multiplications) needed for computing the product of two $n \times n$ matrices. Then

$$M(n) \leq 7M(n/2) + 18(n/2)^2,$$

implying $M(n) = O(n \log_2 7) = O(n^{2.81}).$

Note If n is not a power of 2, then we apply the above procedure to the $2^{\lceil \log_2 n \rceil} \times 2^{\lceil \log_2 n \rceil}$ matrices depicted below. The order of magnitude remains the same.

\[
\begin{array}{ccc}
X & \times & Y \\
0 & & 0 \\
\end{array}
=
\begin{array}{ccc}
0 \\
\end{array}
\]