Signal, Image and Data Processing (236200)

Tutorial 7

The Discrete Fourier Transform (DFT)
The DFT Matrix

The DFT matrix of size $M \times M$ is defined as

$$[\text{DFT}] = \frac{1}{\sqrt{M}} \begin{bmatrix} (W^*)^{0\cdot0} & \cdots & (W^*)^{0\cdot(M-1)} \\ \vdots & \ddots & \vdots \\ (W^*)^{(M-1)\cdot0} & \cdots & (W^*)^{(M-1)\cdot(M-1)} \end{bmatrix}$$

where $W \triangleq e^{i\frac{2\pi}{M}} = \cos\left(\frac{2\pi}{M}\right) + i \sin\left(\frac{2\pi}{M}\right)$

and $i \triangleq \sqrt{-1}$

and * denotes complex conjugate

$$W^* \triangleq e^{-i\frac{2\pi}{M}} = \cos\left(\frac{2\pi}{M}\right) - i \sin\left(\frac{2\pi}{M}\right)$$

The DFT matrix is symmetric and unitary, hence, its inverse is

$$[\text{DFT}]^* = \frac{1}{\sqrt{M}} \begin{bmatrix} W^{0\cdot0} & \cdots & W^{0\cdot(M-1)} \\ \vdots & \ddots & \vdots \\ W^{(M-1)\cdot0} & \cdots & W^{(M-1)\cdot(M-1)} \end{bmatrix}$$

i.e., $[\text{DFT}]^*[\text{DFT}] = [\text{DFT}][\text{DFT}]^* = I$
Representation of a Discrete Signal in the DFT Domain

Uniform sampling of the continuous signal \(\varphi(t) \) provides us the discrete set of \(M \equiv 2N + 1 \) samples:

\[
\varphi_{-N}, \varphi_{-(N-1)}, \ldots, \varphi_0, \ldots, \varphi_{N-1}, \varphi_N
\]

that can be also arranged in a column vector as follows:

\[
\varphi = \begin{bmatrix}
\varphi_0 \\
\varphi_1 \\
\vdots \\
\varphi_N \\
\varphi_{-N} \\
\varphi_{-(N-1)} \\
\vdots \\
\varphi_{-1}
\end{bmatrix}
\]

Note the position of the negative-indexed samples.
Representation of a Discrete Signal in the DFT Domain

The representation of the discrete signal \(\varphi \) is

\[
\varphi^F = [\text{DFT}] \varphi
\]

or in a more explicit form:

\[
\begin{bmatrix}
\varphi_0^F \\
\varphi_1^F \\
\vdots \\
\varphi_N^F \\
\varphi_{-(N-1)}^F \\
\vdots \\
\varphi_{-1}^F
\end{bmatrix} = \frac{1}{\sqrt{M}} \begin{bmatrix}
(W^*)^{0\cdot0} & \cdots & (W^*)^{0\cdot(M-1)} \\
\vdots & \ddots & \vdots \\
(W^*)^{(M-1)\cdot0} & \cdots & (W^*)^{(M-1)\cdot(M-1)}
\end{bmatrix} \begin{bmatrix}
\varphi_0 \\
\varphi_1 \\
\vdots \\
\varphi_N \\
\varphi_{-(N-1)} \\
\vdots \\
\varphi_{-1}
\end{bmatrix}
\]

Note that the negative index \(-k\) (for \(k = 1, \ldots, N\)) can be considered also as the positive index \(M - k\).
Representation of a Discrete Signal in the DFT Domain

The DFT-domain representation is obtained via

$$\varphi^F = [\text{DFT}] \varphi$$

Multiplying both sides of the equation by $[\text{DFT}]^*$, i.e.,

$$[\text{DFT}]^* \varphi^F = [\text{DFT}]^* [\text{DFT}] \varphi$$

and, as the DFT matrix is unitary, we get

$$\varphi = [\text{DFT}]^* \varphi^F$$

which is the inverse DFT procedure:
Given φ^F it provides the signal-domain representation φ.
DFT Example #1: The Kronecker Delta

Consider the following discrete signal of \(M \) samples:

For \(n = 0, \ldots, M - 1 \):
\[
\varphi_n = \delta_{n,n_0} \triangleq \begin{cases}
1, & \text{for } n = n_0 \\
0, & \text{otherwise}
\end{cases}
\]

where \(n_0 \in \{0, \ldots, M - 1\} \).

\(\delta_{n,n_0} \) is also known as the Kronecker delta, here shifted to \(n_0 \).

The DFT of the above signal is

\[
\varphi^F = \frac{1}{\sqrt{M}} \begin{bmatrix}
(W^*)^{0\cdot0} & \cdots & (W^*)^{0\cdot(M-1)} \\
\vdots & \ddots & \vdots \\
(W^*)^{(M-1)\cdot0} & \cdots & (W^*)^{(M-1)\cdot(M-1)}
\end{bmatrix}
\]

The \((n_0 + 1)^{th}\) entry

The \((n_0 + 1)^{th}\) column of the DFT matrix

\[
\frac{1}{\sqrt{M}} \begin{bmatrix}
(W^*)^{0\cdot0} \cdot n_0 \\
\vdots \\
(W^*)^{(M-1)\cdot0} \cdot n_0
\end{bmatrix}
= \frac{1}{\sqrt{M}} \begin{bmatrix}
e^{-i\frac{2\pi}{M}0\cdot n_0} \\
e^{-i\frac{2\pi}{M}1\cdot n_0} \\
\vdots \\
e^{-i\frac{2\pi}{M}(M-1)\cdot n_0}
\end{bmatrix}
\]

Note the particular case of \(n_0 = 0 \).
DFT Example #2: Cosine Signal

Consider the following discrete signal of M samples:

For $n = 0, \ldots, M - 1$:

$$\varphi_n = \cos\left(\frac{2\pi k_0}{M} n\right)$$

where $k_0 \in \{0, \ldots, M - 1\}$

Recall that

$$\cos\left(\frac{2\pi k_0}{M} n\right) = \frac{1}{2} e^{i\frac{2\pi k_0}{M} n} + \frac{1}{2} e^{-i\frac{2\pi k_0}{M} n} = \frac{1}{2} (W^{k_0} n + W^{-k_0} n)$$

The k^{th} component of the DFT-domain representation of the above signal is

$$\varphi_k^F = \frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} (W^*)^{k \cdot n} \varphi_n = \frac{1}{\sqrt{M}} \sum_{n=0}^{M-1} W^{-k\cdot n} \frac{1}{2} (W^{k_0} n + W^{-k_0} n) =$$

$$= \frac{1}{\sqrt{M}} \left(\frac{1}{2} \sum_{n=0}^{M-1} W^{-k\cdot n} W^{k_0} n + \frac{1}{2} \sum_{n=0}^{M-1} W^{-k\cdot n} W^{-k_0} n\right) = \frac{1}{\sqrt{M}} \left(\frac{1}{2} \sum_{n=0}^{M-1} W^{-(k-k_0)\cdot n} + \frac{1}{2} \sum_{n=0}^{M-1} W^{-(k+k_0)\cdot n}\right)$$
DFT Example #2: Cosine Signal

Let us examine the expression \(\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} \):

For \(k = k_0 \):
\[
\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} = \sum_{n=0}^{M-1} W^{-0 \cdot n} = \sum_{n=0}^{M-1} 1 = M
\]

For \(k \neq k_0 \):
\[
\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} = \sum_{n=0}^{M-1} (W^{-(k-k_0)})^n = \frac{(W^{-(k-k_0)})^M - 1}{W^{-(k-k_0)} - 1}
\]

Recall that \(W = e^{i \frac{2\pi}{M}} \) [and that \(W^0, W^1, \ldots, W^{M-1} \) are the \(M \) roots (of order \(M \)) of unity].

Noting that \((W^{-(k-k_0)})^M = (W^M)^{-(k-k_0)} = (e^{i \frac{2\pi}{M}})^{-(k-k_0)} = (e^{i 2\pi})^{-(k-k_0)} = 1 \) implies

For \(k \neq k_0 \):
\[
\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} = 0
\]

\[
\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} = M \cdot \delta_{k,k_0} = \begin{cases} M & \text{for } k = k_0 \\ 0 & \text{otherwise} \end{cases}
\]
DFT Example #2: Cosine Signal

Using the last result

\[
\sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} = M \cdot \delta_{k,k_0} \triangleq \begin{cases} M & \text{for } k = k_0 \\ 0 & \text{otherwise} \end{cases}
\]

The following development justifies the correspondence between the negative index \(-k_0\) and the index \(M - k_0\):

\[
\sum_{n=0}^{M-1} W^{-(k+k_0) \cdot n} = \sum_{n=0}^{M-1} W^{-(k+k_0-M) \cdot n} = \sum_{n=0}^{M-1} W^{-(k-(M-k_0)) \cdot n} = M \cdot \delta_{k,M-k_0} \triangleq \begin{cases} M & \text{for } k = M - k_0 \\ 0 & \text{otherwise} \end{cases}
\]

We develop the expression for the \(k^{th}\) component of the DFT-domain representation of the cosine signal:

\[
\varphi_k^k = \frac{1}{\sqrt{M}} \left(\frac{1}{2} \sum_{n=0}^{M-1} W^{-(k-k_0) \cdot n} + \frac{1}{2} \sum_{n=0}^{M-1} W^{-(k+k_0) \cdot n} \right) = \frac{1}{\sqrt{M}} \left(\frac{1}{2} M \cdot \delta_{k,k_0} + \frac{1}{2} M \cdot \delta_{k,M-k_0} \right) = \\
\frac{\sqrt{M}}{2} \delta_{k,k_0} + \frac{\sqrt{M}}{2} \delta_{k,M-k_0}
\]
Image Enhancement in The DFT Domain

• We are given a noisy image of size 256×256:

$$I_{noisy}[r,n] = I[r,n] + noise[r,n]$$

• The noise is harmonic and follows the formula:

$$noise[r,n] = A_r \cdot \cos(2\pi fn + \phi_r)$$

• $f = \frac{1}{8 \text{ pixels}}$

• The amplitude, A, and the phase, φ, are random and independent for each row.
Image Enhancement in The DFT Domain

\[A_{100} = 22.37 \]
\[\varphi_{100} = 1.325 \text{ rad} \]
Image Enhancement in The DFT Domain
Image Enhancement in The DFT Domain
The Image-Domain Smoothing Alternative
Image Enhancement in The DFT Domain

Alternatives: Smoothing vs Median (8 pixels)

Picture after average filter 1x8

Picture after median filter 1x8

No noise but image is blurred

236200, CS Department, Technion
Image Enhancement in The DFT Domain

• DFT of the noise in line r

Recall that $M = 256$ and $f = \frac{1}{8}$, hence

$$noise_n^{(r)} = A_r \cos (2\pi fn + \phi_r) = A_r \cos \left(2\pi \frac{32}{M} n + \phi_r \right)$$

Then, since the signal is a shifted cosine function, its DFT is

$$DFT \left\{ noise^{(r)} \right\}_k = \begin{cases} \sqrt{M} \over 2 & A_r e^{i\phi_r}, \ k = 32, 224 \\ 0 & \text{else} \end{cases}$$

Here we would like to handle frequencies 32 and 224 (recall that 224 can also be considered as -32).
Image Enhancement in The DFT Domain

Noisy signal in DFT domain

Filtered signal in DFT domain

Notch Filter: Attenuate Specific Frequencies
Image Enhancement in The DFT Domain

- The noise was significantly removed.
- Original image was not fully restored
 - We cannot restore the attenuated frequencies
Image Enhancement in The DFT Domain

Notch filter

Smoothing filter of 8 pixels
• Filter in freq. domain:
 Filter=ones(1,256);
 Filter(32+1)=0;
 Filter(224+1)=0;

• Filtration:
 For k=1:size(I,1),
 Y=fft(I(k,:)).*Filter;
 I(k,:)=ifft(Y);
end
DFT Example #3: Periodic Delta Signal

Consider the following discrete signal of N samples:

For $n = 0, ..., N - 1$:

$$\varphi_n = \begin{cases}
1 & \text{for } n = 0, T, ..., (c - 1)T \\
0 & \text{otherwise}
\end{cases}$$

where $N = cT$ for some positive integer c.

What is the DFT of φ?

Solution:

Using the definition of Kronecker’s delta

$$\delta_{n,n_0} = \begin{cases}
1 & , \text{for } n = n_0 \\
0 & , \text{otherwise}
\end{cases}$$

we can write the signal as

$$\varphi_n = \sum_{l=0}^{c-1} \delta_{n,Tl}$$

where T and c were defined in the question.
DFT Example #3: Periodic Delta Signal

Recall the definition of the N^{th} order root of the unity: $W_N = e^{\frac{i2\pi}{N}}$.

Then the k^{th} DFT coefficient is

$$\phi_k^F = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} (W_N^*)^{k \cdot n} \varphi_n = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \left((W_N^*)^{k \cdot n} \sum_{l=0}^{c-1} \delta_{n,Tl} \right) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} \sum_{l=0}^{c-1} \delta_{n,Tl} \cdot (W_N^*)^{k \cdot n}$$

$$= \frac{1}{\sqrt{N}} \sum_{l=0}^{c-1} (W_N^*)^{k \cdot Tl}$$

Since $N = cT$ we get that $(W_N^*)^{k \cdot Tl} = \left(e^{-\frac{i2\pi}{N}} \right)^{k \cdot Tl} = e^{-\frac{i2\pi}{N} \cdot k \cdot Tl} = e^{-\frac{i2\pi}{c} \cdot kl} = (W_c^*)^{kl}$

and therefore

$$\phi_k^F = \frac{1}{\sqrt{N}} \sum_{l=0}^{c-1} (W_N^*)^{k \cdot Tl} = \frac{1}{\sqrt{N}} \sum_{l=0}^{c-1} (W_c^*)^{kl}$$
DFT Example #3: Periodic Delta Signal

For $k = 0, c, ..., (T - 1)c$ we get that

$$\frac{1}{\sqrt{N}} \sum_{l=0}^{c-1} (W_c^*)^{kl} = \frac{1}{\sqrt{N}} \sum_{l=0}^{c-1} (W_c^*)^k = \frac{1}{\sqrt{N}} \sum_{l=0}^{c-1} (1)^l = \frac{1}{\sqrt{N}} c = \frac{1}{\sqrt{N}} \cdot \frac{N}{T} = \frac{\sqrt{N}}{T}$$

For $k \neq 0, c, ..., (T - 1)c$ we calculate the sum of the geometric series as

$$\sum_{l=0}^{c-1} (W_c^*)^{kl} = \frac{1 - (W_c^*)^k}{1 - (W_c^*)^k} = \frac{1 - (W_c^*)^c}{1 - (W_c^*)^k} = \frac{1 - 1}{1 - (W_c^*)^k} = 0$$

where we used the fact that $(W_c^*)^c = \left(e^{-i2\pi/c}\right)^c = e^{-i2\pi} = 1$.

To conclude, we got that

$$\varphi_k^F = \begin{cases} \frac{\sqrt{N}}{T} & \text{for } k = 0, c, ..., (T - 1)c \\ 0 & \text{otherwise} \end{cases}$$