Computational Geometry in Competitive Programming

Convex Hull – Naïve Algorithm, Graham’s Scan
Plane Sweep – Line segment intersection
Convexity and Convex Hull

A set S is **convex** if for any pair of points $p, q \in S$, the entire line segment $pq \subseteq S$.

• The **convex hull** of a set S is the minimal convex set that contains S.

• (Equivalent definition) The intersection of all convex sets that contain S.
Computation of Convex Hull

Input = set of points:
\[P = \{ p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9 \} \]

Output = representation of the convex hull (clockwise order):
\[CH(P) = \{ p_4, p_5, p_8, p_2, p_9 \} \]

- \(CH(P) \) is a **convex polygon**

- **Edges** of \(CH(P) \)
 - all points of \(P \setminus \{ p, q \} \) lie to the right of directed line through \(p \) and \(q \) \(\Rightarrow \) \(pq \) is an edge of \(CH(P) \)
Convex Hull — Naïve Algorithm

Algorithm $\text{SLOW}\text{ConvexHull}(P)$

Input. A set P of points in the plane.

Output. A list \mathcal{L} containing the vertices of $\mathcal{C}\mathcal{H}(P)$ in clockwise order.

1. $E \leftarrow \emptyset$.
2. for all ordered pairs $(p, q) \in P \times P$ with p not equal to q
3. do valid \leftarrow true
4. for all points $r \in P$ not equal to p or q
5. do if r lies to the left of the directed line from p to q
6. then valid \leftarrow false.
7. if valid then Add the directed edge \overrightarrow{pq} to E.
8. From the set E of edges construct a list \mathcal{L} of vertices of $\mathcal{C}\mathcal{H}(P)$, sorted in clockwise order.
Implementation – Naïve Alg.

• Points

```cpp
struct PT
{
    double x, y;
    // functions
};
```

• Set of points

```cpp
vector<PT> Points;
```

• Directed edges

```cpp
struct EDGE
{
    PT origin, destination;
};
```
Implementation – Naïve Alg.

• If \(r \) lies to the left of the directed line from \(p \) to \(q \)

\[
\overrightarrow{rp} \times \overrightarrow{rq} = \begin{vmatrix} i & j & k \\ x_p - x_r & y_p - y_r & 0 \\ x_q - x_r & y_q - y_r & 0 \end{vmatrix} = (0, 0, \text{cross})
\]

// decide if \(r \) lies on the left, right or on the line \(p \rightarrow q \)
char side(PT& p, PT& q, PT& r)
{
 double cross = (p.x - r.x) * (q.y - r.y) - (p.y - r.y) * (q.x - r.x);

 if (fabs(cross) <= EPS) return 'o'; // o ----------- on the line
 if (cross > 0) return 'l'; // l ----------- left
 return 'r'; // r ----------- right
}
Naïve Alg. — Complexity and Robustness

- **Time Complexity:** $O(n^3)$
 - Number of point pairs: $\binom{n}{2} = \Theta(n^2)$
 - Check all points for each pair: $O(n)$

- **Space Complexity:** $O(n)$

• Not Robust
 • Degenerate case
 • Rounding errors of coordinates
Convex Hull — Graham’s Scan

Incremental Algorithm
- Add points from left to right

First upper hull, then lower hull

Update of upper hull
- The rightmost point is on the upper hull
- Check right turn
- Delete middle point
Upper Hull — Graham’s Scan

Algorithm ConvexHull(P)

Input. A set P of points in the plane.

Output. A list containing the vertices of $\mathcal{CH}(P)$ in clockwise order.

1. Sort the points by x-coordinate, resulting in a sequence p_1, \ldots, p_n.
2. Put the points p_1 and p_2 in a list $\mathcal{L}_{\text{upper}}$, with p_1 as the first point.
3. for $i \leftarrow 3$ to n
 4. do Append p_i to $\mathcal{L}_{\text{upper}}$.
5. while $\mathcal{L}_{\text{upper}}$ contains more than two points and the last three points in $\mathcal{L}_{\text{upper}}$ do not make a right turn
 do Delete the middle of the last three points from $\mathcal{L}_{\text{upper}}$.
Convex Hull — Graham’s Scan

Algorithm $\text{CONVEXHULL}(P)$

Input. A set P of points in the plane.

Output. A list containing the vertices of $\mathcal{CH}(P)$ in clockwise order.

1. Sort the points by x-coordinate, resulting in a sequence p_1, \ldots, p_n.
2. Put the points p_1 and p_2 in a list $\mathcal{L}_{\text{upper}}$, with p_1 as the first point.
3. for $i \leftarrow 3$ to n
 4. do Append p_i to $\mathcal{L}_{\text{upper}}$.
 5. while $\mathcal{L}_{\text{upper}}$ contains more than two points and the last three points in $\mathcal{L}_{\text{upper}}$ do not make a right turn
 6. do Delete the middle of the last three points from $\mathcal{L}_{\text{upper}}$.
5. Put the points p_n and p_{n-1} in a list $\mathcal{L}_{\text{lower}}$, with p_n as the first point.
6. for $i \leftarrow n-2$ downto 1
 7. do Append p_i to $\mathcal{L}_{\text{lower}}$.
 8. while $\mathcal{L}_{\text{lower}}$ contains more than 2 points and the last three points in $\mathcal{L}_{\text{lower}}$ do not make a right turn
 9. do Delete the middle of the last three points from $\mathcal{L}_{\text{lower}}$.
10. Remove the first and the last point from $\mathcal{L}_{\text{lower}}$ to avoid duplication of the points where the upper and lower hull meet.
11. Append $\mathcal{L}_{\text{lower}}$ to $\mathcal{L}_{\text{upper}}$, and call the resulting list \mathcal{L}.
12. return \mathcal{L}
Time complexity – Graham’s Scan

- Sorting - $O(n \log n)$
- for-loop - $O(n)$
 - while-loop – each point can be deleted only once

\[
\text{for } i \leftarrow 3 \text{ to } n \\
\quad \text{do Append } p_i \text{ to } \mathcal{L}_{\text{upper}}. \\
\quad \text{while } \mathcal{L}_{\text{upper}} \text{ contains more than two points and the last three points in } \mathcal{L}_{\text{upper}} \text{ do not make a right turn} \\
\quad \quad \text{do Delete the middle of the last three points from } \mathcal{L}_{\text{upper}}.
\]
Implementation – Graham’s Scan

• If $p_3 \rightarrow p_2 \rightarrow p_1$ make a left turn (not right turn)

```cpp
// check p3 (leftmost) \(\rightarrow\) p2 \(\rightarrow\) p1 (rightmost) left turn (not right turn)
bool left(PT& p1, PT& p2, PT& p3)
{
    double cross = (p2.x - p3.x) * (p1.y - p3.y) - (p2.y - p3.y) * (p1.x - p3.x);
    if (fabs(cross) <= EPS)
        return true;  // to delete p2
    if (cross > 0)
        return true;
    return false;
}
```
Implementation – Graham’s Scan

• **Input:** a set of points in the plane (points.txt)
• **Output:** vertices of convex hull in clockwise order

```
5.5 6
2 7
10.5 0.5
3 4
8.5 5.5
12 5
7.5 2.5
6 9
10.5 3.5
8.5 7
```
Line Segment Intersection (LSI)

- **Problem** – Given a set of n closed segments $S = \{s_1, s_2, \ldots, s_n\}$ in the plane
- Report all intersection points
- Count the number of intersection points

- **Assumptions**
 - No line segment is horizontal.
 - No two segments overlap in more than one point.
 - No three segments intersect at a common point.

- **Naïve Algorithm**
 - Check each pair of segments for intersection.
 - Complexity: $\Theta(n^2)$ time, $\Theta(n)$ space.
LSI - Plane Sweep Algorithm

- **Sweep line** – an imaginary line
- A horizontal line sweeping downwards over the plane
- **Status** of sweep line – the set of segments intersecting it
- Update status only at particular points

- **Event points**
 - Upper endpoint
 - Intersection
 - Lower endpoint
LSI — Basic Idea

We are able to identify all intersections by looking **only** at **adjacent** segments in the sweep line status during the sweep.

- **Theorem** – Just before an intersection occurs (infinitesimally-close to it), the two respective segments are adjacent to each other in the sweep-line status.
- **In practice** – Whenever two line segments become adjacent along the sweep line, check for their intersection below the sweep line.
LSI – Alg. Overview

• Imagine moving a horizontal line downwards over the plane
 • Above the sweep line – finished
 • Below the sweep line – to be explored

• Maintain status of the sweep line

• Sweep line halts at event points
 • Endpoints of the segments – known from input
 • Intersection points – computed on the fly

• Take actions at event points
 • Update status
 • Detect intersections
LSI - Plane Sweep Algorithm

- **Data structures** – 2 balanced BST
- **Event queue** Q – store events according to the order of events (y coordinates)
- **Status structure** T – maintain status of the sweep line
 - Used to access neighbors of a given segment
 - Leaves – segments intersecting the sweep line
 - Internal node – rightmost leaf in its left subtree
Algorithm FINDINTERSECTIONS(S)

Input. A set S of line segments in the plane.

Output. The set of intersection points among the segments in S, with for each intersection point the segments that contain it.

1. Initialize an empty event queue Q. Next, insert the segment endpoints into Q; when an upper endpoint is inserted, the corresponding segment should be stored with it.

2. Initialize an empty status structure T.

3. while Q is not empty

4. do Determine the next event point p in Q and delete it.

5. $\text{HANDLEEVENTPOINT}(p)$
Plane Sweep — Handle Events

➢ **Upper Endpoint**

1. **Locate segment** position in the status T.
2. **Insert segment** into sweep line status T.
3. **Test for intersection** below the sweep line against its 2 neighbors along the sweep line (if exist).
4. **Insert intersection point(s)** (if found) into the event queue.
Plane Sweep — Handle Events

- **Lower Endpoint**
 1. Locate segment position in the status T.
 2. Delete segment from sweep line status T.
 3. Test for intersection below the sweep line between its 2 neighbors along the sweep line (if exist).
 4. Insert intersection point(s) (if found and distinct) into the event queue.
Plane Sweep — Handle Events

➢ **Intersection Point**

1. **Report/count** the point.
2. **Swap** the two line segments in the sweep line status T.
3. **Test for intersection** below the sweep line against each of their new neighbor along the sweep line (if exist).
4. **Insert intersection point(s)** (if found and distinct) into the event queue.
Complexity

➢ Time Complexity - $O(m \log n) = O((n + 1) \log n)$

1. Initialize an empty event queue Q. Next, insert the segment endpoints into Q; when an upper endpoint is inserted, the corresponding segment should be stored with it. $O(n \log n)$

2. Initialize an empty status structure \mathcal{T}. Constant

3. while Q is not empty

4. do Determine the next event point p in Q and delete it.

5. HANDLEEVENTPOINT(p)

➢ At most 2 new events need to be inserted into Q

➢ Deletions, insertions on Q - $O(\log n)$

➢ Number of operations on T linear in m (# all event points)

➢ Deletions, insertions, neighbor finding on T - $O(\log n)$
Implementation – Plane Sweep Alg.

- **Input:** a list of non-overlapping axis-aligned rectangles (rectangles.txt)
- **Output:** the number of neighbors of each rectangle
Implementation – Plane Sweep Alg.

- Sweep line **status**: set (BBST)
- **Events**:
Implementation – Plane Sweep Alg.

• Sweep line **status**: set (BBST)

• **Events**: 2 lower endpoints of all rectangles

• Handle events
 • Right vertex: remove rectangle from sweep line status
 • Left vertex: find adjacent rectangles from the status, if any neighbor is found, increase count by 1 for both this rectangle and its neighbor(s), insert rectangle into status

• Event queue: static (no insertion needed) ⇒ array / vector

\((x, y) \quad (x + W, y) \)
How to order events?

How to define tree node of the status?