Shadow Generation
Shadows

- Realistic illumination includes shadows cast by objects

- Simple shadow generation methods:
 - Shadow maps
 - Shadow volumes

- Advanced methods:
 - Ray-tracing
 - Radiosity
Shadow Map Algorithm

- Object is in shadow if not “seen” by light source
- Idea – compute the discrete visibility of the scene from light source to decide if a pixel is shadowed
procedure SHADOWMAPPING
render z-buffer from light’s point of view to depth map \(D \)
render scene \(S \) from the eye’s point of view into image \(A \)
texture map \(D \) onto \(S \), creating \(d(u,v) \) and \(w(u,v) \)
for each rasterized pixel of \(A \) with texture coords \((u,v)\) do
 if \(d(u,v) < w \) then
 pixel is shadowed
 end if
end for
$d(u, v)$
Summary

- Shadow map algorithm can approximate the shadows of any scene which can be rendered using a Z-buffer.
- Requires separate Z-buffer for each light source.
- Every polygon is rendered $N+1$ times (for N light sources).
Disadvantage

- Image space algorithm: severe aliasing can occur if the light source is at orientation significantly different from the viewpoint.
Shadow Volume Algorithm

- The shadow boundary separates illuminated and shaded regions.
- Compute as extrusion of **silhouettes** along light direction.
- Compute intersection of extruded volume with other objects.

Shadow volumes circa Leonardo da Vinci
Silihouettes

The edges between front-facing polygons and back-facing polygons.
Shadow Volumes

- Light source
- Eye position
- Shadowing object
- Region inside shadow volume (shadowed)
- Region outside shadow volume (illuminated)

- Shadow volume (infinite extent)
The Shadowed Regions

![Diagram showing shadowed regions with labels for scene polygon and silhouette polygon.](image)
Shadow Volume Algorithm

- For each object and light source compute object silhouette (and boundary if open) from light source viewpoint
- Extend each silhouette (and boundary) to form semi-infinite volumes
- Feed boundaries into regular Z-buffer as fully transparent polygons
- Front facing shadow polygons cause object behind to be shadowed
- Back facing shadow polygons cancel effect of front facing ones
- Usually implemented using *stencil buffer*
Properties of Shadow Volumes

- Object space algorithm - does not depend on view point
- High complexity per object, function of scene
- Requires geometric methods
 - Silhouette computation
 - Extrusion