Mesh Representation & Modeling
Polygonal Mesh

- Geometric object made of vertices, edges and faces
 - Polyhedron
 - Pyramid
 - Cube
 - Sphere
 - Can also be 2D (although much less interesting)

- Faces are polygons
 - Triangular mesh
 - Quad mesh
 - General n-gons
Polygonal Mesh

- **Vertex** – a point in space
 - Can include more info like color and normal
- **Edge** – a segment between two vertices
- **Face** – a polygon defined by a set of vertices and edges
2-Manifold Polygonal Mesh

- Every edge has at most two faces
 - Exactly two faces if the mesh is closed

- Euler invariance
 \[V - E + F = 2(1 - g) \]

- Where:
 - \(V \) – number of vertices
 - \(E \) – number of edge
 - \(F \) – number of faces
 - \(G \) – mesh genus
Data Structures

Why do we need a data structure?

- To store the mesh
- To make queries
 - Which vertices are connected to vertex \(v \)?
 - What are the neighbors of face \(f \)?
- Geometric operation
 - Add vertices
 - Split edges
Polygon Soup

- Face list
 - Lists of coordinates
- Polygons are unrelated

Mesh Modeling - Center for Graphics and Geometric Computing, Technion
Vertex-Vertex

- Vertex list
 - Vertex coordinates
 - Lists of connected vertices

- Edges and faces are implicit

<table>
<thead>
<tr>
<th>vertex</th>
<th>coordinates</th>
<th>Neighbors</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>(x, y, z)</td>
<td>(v, v)</td>
</tr>
<tr>
<td>v</td>
<td>(x, y, z)</td>
<td>(v, v, v)</td>
</tr>
<tr>
<td>v</td>
<td>(x, y, z)</td>
<td>(v, v, v, v)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Vertex-Vertex

- Vertex list
 - Vertex coordinates
 - Lists of connected vertices: Adjacency matrix

- Edges and faces are implicit
Face-Vertex

- **Vertex list**
 - Vertex coordinates
 - Lists of incident faces

- **Face list**
 - Lists of incident vertices

Vertex coordinates

<table>
<thead>
<tr>
<th>vertex</th>
<th>coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>(x_1, y_1, z_1)</td>
</tr>
<tr>
<td>v_2</td>
<td>(x_2, y_2, z_2)</td>
</tr>
<tr>
<td>v_3</td>
<td>(x_3, y_3, z_3)</td>
</tr>
</tbody>
</table>

Vertices (ccw)

<table>
<thead>
<tr>
<th>face</th>
<th>vertices (ccw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1</td>
<td>(v_1, v_2, v_3)</td>
</tr>
<tr>
<td>f_2</td>
<td>(v_2, v_4, v_3)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Winged-Edge

Winged-Edge Polyhedron Representation
Technical Report, Stanford University, Stanford, CA, USA

- **Vertex list**
 - Vertex coordinates
 - Lists of incident edges

- **Face list**
 - Vertex coordinates
 - Lists of incident edges

- **Edge list**
 - List of incident vertices, edges and faces

Bruce G. Baumgart, 1972. Winged Edge Polyhedron Representation...

Mesh Modeling—Center for Graphics and Geometric Computing, Technion

<table>
<thead>
<tr>
<th>vertex) coordinates</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1 (x_1, y_1, z_1)</td>
<td>(e_1, e_2)</td>
</tr>
<tr>
<td>v_2 (x_2, y_2, z_2)</td>
<td>(e_2, e_3)</td>
</tr>
<tr>
<td>v_3 (x_3, y_3, z_3)</td>
<td>(e_1, e_5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>face</th>
<th>vertices (ccw)</th>
<th>Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_1 (v_1, v_2, v_3)</td>
<td>(e_1, e_2, e_3)</td>
<td></td>
</tr>
<tr>
<td>f_2 (v_2, v_4, v_3)</td>
<td>(v_3, v_4, v_5)</td>
<td></td>
</tr>
</tbody>
</table>

...
Winged-Edge

- **Vertex list**
 - Vertex coordinates
 - Lists of incident edges

- **Edge list**
 - List of incident vertices, edges and faces

- **Face list**
 - Vertex coordinates
 - Lists of incident edges

Mesh Modeling - Center for Graphics and Geometric Computing, Technion

<table>
<thead>
<tr>
<th>Edge</th>
<th>Vertices</th>
<th>Edges</th>
<th>Faces</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>(v_1, v_3)</td>
<td>(e_2, e_3)</td>
<td>(f_1)</td>
</tr>
<tr>
<td>e_2</td>
<td>(v_1, v_2)</td>
<td>(e_1, e_3)</td>
<td>(f_1)</td>
</tr>
<tr>
<td>e_3</td>
<td>(v_2, v_3)</td>
<td>(e_1, e_2, e_4, e_5)</td>
<td>(f_1, f_2)</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Normal Estimation

- Normals are not always available
 - Face normals can always be computed
 - Vertex normals are not even defined
 - No correct answer.

- Estimate vertex normals as if shape was smooth
 - Vertex normal is average of incident face normals
 - What if some faces are larger than others?
 - Vertex normal is *weighted* average of incident face normals
 - Weights are face areas
Smoothing

- Move “pointy” vertices to make the mesh smooth
 - New vertex position is average of neighbors positions
 - Side effect – Mesh shrinkage
 - What will happen after infinite iterations?
Basic Operations

- Each element can be individually transformed
 - Also groups of elements
- Moving vertices
Basic Operations

- Each element can be individually transformed
 - Also groups of elements
- Moving edges
Basic Operations

- Each element can be individually transformed
 - Also groups of elements
- Moving faces
Soft Selection

- Select a vertex, its vicinity gets “partially” selected
 - When the vertex is moved the vicinity makes a “partial” move
Soft Selection

- Select a vertex, it’s vicinity gets “partially” selected
 - When the vertex is moved the vicinity makes a “partial” move
Refining Meshes

- Edge Split
 - Create a new vertex dividing an edge
- Face Split
 - Create a new edge dividing a face
- And many more
 - Extrusion, Chamfer, Fillet …