Illumination Models & Shading
Lighting vs. Shading

- **Lighting**: Interaction between materials and light sources
 - Physics

- **Shading**: Determining the color of a pixel
 - Computer Graphics

- Shading is typically determined by lighting
 - Could visualize the lighting function using *Non Photorealistic Rendering*.
Shading Models

- Simulate physical phenomena
 - Real illumination simulation is complicated & expensive
 - Use approximation and heuristics with little physical basis…
 - … that looks surprisingly good:
Local vs. Global Illumination Models

- **Local model** – direct and local interaction of each object location with the light.
- **Global model** – interactions and exchange of light energy between different objects.
Light Sources

- **Point source (A):** All light originates at a point
 - Rays hit a planar surface at different incidence angles

- **Parallel source (B):** All light rays are parallel
 - Rays hit a planar surface at identical incidence angles
 - May be modeled as a point source at infinity
 - Also denoted *Directional light source*

- **Area source (C):** Light originates at finite area in space.
 - An object of finite area that emits light
 - Also denoted *Distributed source*

Question: One of these lights Sources is far more difficult to Handle. Which one and why?
The Shading’s components

- **Specular reflection**
 - Metallic (smooth) surface
 - Reflects light at defined angle

- **Diffuse reflection**
 - Plastic (rough) surface
 - Reflects light in all directions

- **Ambient light**
 - Light reflected many times, comes equally from all directions
Ambient Light

- Assume non-directional light in the environment
- Object illuminated with same light everywhere
 - Looks like silhouette
- The Illumination equation $I = I_a k_a$
 - I_a - ambient light intensity
 - k_a - fraction of ambient light reflected from surface
 - As a vector, also defines object color
Diffuse Light

- Dull surfaces such as solid matte plastic reflects incoming light uniformly in all directions.
- This is called **diffuse** or **Lambertian** reflection.
- For light source in a normalized direction L and a surface with normal N, the illumination of the surface is proportional to $\langle N, L \rangle$.
Diffuse Reflection

- Illumination equation is now:

$$I = I_a k_a + I_p k_d \langle N, L \rangle = I_a k_a + I_p k_d \cos \theta$$

- I_p - point light source’s intensity
- k_d - surface diffuse reflection coefficient

Question: Can we locate the light source from the shading?
Specular Reflection

- Shiny objects (e.g. metallic) reflect light in a preferred direction R determined by the surface normal N.

- Most objects are not ideal mirrors – also reflect in the immediate vicinity of R

- Phong Model – approximate attenuation by the form of $\cos^n \alpha$ (no real physical basis)

Question: What is the color of the reflected component?
Specular Reflection (Phong Model)

- Illumination equation:

\[
I = I_a k_a + I_p \left(k_d (N \cdot L) + k_s (R \cdot V)^n \right)
\]

- \(k_s\) - Specular reflection coefficient
- \(n\) - Specularity exponent
Specular Reflection (cont’d)

- Exponent n of cosine controls the decay factor of the attenuation function:

- Again, no physical basis but it does look good:
The complete illumination model is hence:

\[I = I_a k_a + I_p \left(k_d (N \cdot L) + k_s (R \cdot V)^n \right) \]
For multiple light sources:

\[I = I_a k_a + \sum I_p \left(k_d (N \cdot L_p) + k_s (R_p \cdot V)^n \right) \]

- \(I_p \) of all light sources are added together
- Precautions should be taken from overflows

Question: How can we achieve atmospheric attenuation effects?
Even More on Illumination Equation

For distance/atmospheric attenuation sources:

\[I = I_a k_a + \sum_p \frac{I_p}{d_p} \left(k_d (N \cdot L_p) + k_s (R_p \cdot V)^n \right) \]

- \(d_p \): distance between surface and light source and/or distance between surface and viewer (Heuristic atmospheric attenuation)

Question: why an attenuation of \(1/d\) and not the physically correct decay (which is!?)
Flat Shading

- Applied to piecewise linear polygonal models
- Simple surface lighting approximated over polygons
- Illumination value depends only on polygon normal ⇒ each polygon is colored with a uniform intensity
- Looks non-smooth (worsened by “Mach bands” effects)
Flat Shading
Gouraud Shading

- If a polyhedron is an approximation of smooth surface:
 - Assign to each vertex the normal of original surface at that point
 - If surface is not available, use estimated normal (how?)
- Compute illumination intensity at vertices using those normals

Question: And then what?
Gouraud Shading

Linearly interpolate lighting intensities at the vertices over interior pixels of the polygon, in the image plane.

Question: Can Gouraud shading support specular lighting?
Gouraud Shading
Phong Shading

- Interpolate (at the vertices in image space) normal vectors instead of illumination intensities
- Apply the illumination equation for each interior pixel with its own (interpolated) normal

\[a \, N_1 + (1 - a) \, N_2 \]
\[b \, N_1 + (1 - b) \, N_3 \]

\[cN_1 + dN_2 + eN_3 \]
\[(c + d + e = 1) \]
Gouraud Shading a Triangle
Comments on Shading

- Phong shading is clearly more expensive (why?) but well worth the effort (yet, with basic Open GL support)
- Can achieve good looking specular highlight effects
- Both the Gouraud and Phong shading schemes are performed in the image plane and fit well into our polygonal scan-conversion fill scheme
- Both the Gouraud and Phong are view dependent
- Can cause artifacts during animation as they are transformation dependent
More Examples

Flat Gouraud Phong