Texture Mapping
Texture Mapping

- An effective method for adding surface detail, mapping texture patterns on the surface of (smooth) objects

- Real objects have details with very high frequencies
 - The surface of an orange is bumpy
 - The surface of a wooden table carries the wood’s colors
 - Mirrors and other shiny surfaces reflect the environment

- Idea: Modify the shading equation at several places
 - Surface color
 - Surface normal
 - Transparency
 - Reflectance
(Anti-)Aliasing

Antialiasing demo
(Anti-)Aliasing
Texture Coordinates

- Associates a portion of the texture with a polygon
- Assign texture coordinates to polygon vertices
texels
Interpolating Texture Coordinates

\[c \, C_1 + d \, C_2 + e \, C_3 \]

\[(c + d + e = 1)\]

\[a \, C_1 + (1 - a) \, C_2 \]

\[b \, C_1 + (1 - b) \, C_3 \]
Parameterization

- We need a mapping between the model and the image

\[F : Model \in \mathbb{R}^3 \rightarrow Image \in \mathbb{R}^2 \]

- With parametric surfaces this mapping is trivial
 - Why?

- What if we have polygonal models?
 - The mapping is not trivial at all
 - This process is called parameterization.
 - An active research topics in CG
Parameterization

- Transform the mesh into a canonical shape
 - Part of plane, sphere, cylinder
Parameterization

- Transform the mesh into a canonical shape
 - Part of plane, sphere, cylinder
- Not all parameterizations are good
 - Bijection
 - Minimize distortion
 - The trivial ones you learned about in lecture are not always good (why?)
- What can be done?
 - Conservation of (relative) distances (isometry)
 - Not always possible
 - Conservation of angles (conformal maps)
 - Not always what you want.
 - Other ideas?
Parameterization

- Flattened version of the camel on the right
- The colors encode the position in space
Computing texture coordinates

- During scan-conversion The texture is sampled
- Assign texture coordinates
 - A mapping of each vertex to the image
 - Interpolate the texture coordinates
 - Same way color is done

Texture Coordinates

(u₀, v₀) (u₁, v₁) (u₂, v₂)

(0,0) (1,0) (0,1) (1,1)
Sampling Scheme

How do we sample?

- Not every point on the surface has a pixel on the image
- Given an image and a real coordinate return a value

Common schemes

- Nearest neighbor
 - Return the pixel value that is the closest
- Bilinear interpolation
 - Given \((u,v)\) find its four neighbor pixels
 - Compute interpolation parameters
 - Compute the final color as a blend
- Higher order sampling schemes
 - Bicubic interpolation
 - Gaussian kernels
 - Might be too expensive in real-time apps
Bilinear Interpolation
Sampling Schemes

What is the parametric domain?

- $[0,1] \times [0,1]$
- So what does it mean to have texture coordinates of $(1.1, 2)$
- Clamping Vs Repeating
Texture Aliasing

many texels to one pixel

one texel to many pixels
Sampling Schemes

- **Mipmapping**
 - MIP – Multum In Parvo
 - “Much in a small space”

- **The idea:**
 - Hold a pyramid of images (a mipmap)
 - Choose a layer based on distance
 - What is it good for?

- **Trilinear interpolation**
 - Interpolate between layer as well

- **Anisotropic interpolation**
 - What?
Textures in OpenGL

- GLSL
 - Vertex shader

```glsl
in vec2 texcoord;
in vec4 vPosition;
...
out vec2 st;
...
void main()
{
  ...
  gl_Position=vPosition;
  st=texcoord;
}
```
Textures in OpenGL

- GLSL
 - Fragment shader

```glsl
in vec2 st;
uniform sampler2D texMap
out vec4 color;
void main()
{
    color = texture2D(texMap, st);
}
```
Textures in OpenGL

- **OpenGL**
 - Activate texture unit, create new texture object and bind it

```c
glActiveTexture(GL_TEXTUREi);
GLuint tex;
glGenTextures(1, &tex);
glBindTexture(GL_TEXTURE2D, tex)
```

- **Fill the texture buffer**

```c
GLubyte texels[512][512][3];
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, texels);
```
Textures in OpenGL

- OpenGL
 - Set texture coordinates as vertex attributes
    ```cpp
    texcoord_loc = glGetUniformLocation(program, "texcoord");
    glEnableVertexAttribArray(texcoord_loc);
    glVertexAttribPointer(texcoord_loc, 2, GL_FLOAT, GL_FALSE, 0, 0);
    ```

- Set texture map
  ```cpp
  tex_loc = glGetUniformLocation(program, "texMap");
  glUniform1i(tex_loc, i);
  ```